FURTHER IMPROVEMENTS IN WARING’S PROBLEM, 1V:
HIGHER POWERS

R. C. VAUGHAN! AND T. D. WOOLEY?

1. INTRODUCTION

As usual we define G(k) to be the least number s such that every sufficiently large
natural number is the sum of, at most, s kth powers of natural numbers. In this
paper we continue the program, initiated in Vaughan and Wooley [18] and extended
in [16] and [17], of comprehensively developing the repeated efficient differencing
process of Wooley [19]. Following Vaughan [13], our methods depend on upper

bounds for the number, Sgk)(P, R), of solutions of the diophantine equations
oy 4l =yl (1.1)
with z;,y; € A(P, R), where throughout we write
A(P,R)={n € [1,P]NZ : p prime, p|n implies p<R}.

In Vaughan and Wooley [18] we established bounds for G(k) when 5<k<9, and
reported on preliminary bounds for G(k) when 10<k<15. We now extend the latter
calculations to bound G(k) when 9<k<20, exploiting subsequent developments and
making some further technical refinements.

Theorem 1.1. When 9<k<20, one has G(k)<H (k), where H(k) is given in the
following table.

k 9 10 11 12 13 14 15 16 17 18 19 20
H(k) 50 59 67 76 84 92 100 109 117 125 134 142
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For comparison, Wooley [19, 22] has obtained the bounds G(k)<8k — 18 for
10<k<17, and G(18)<127, G(19)<135, G(20)<144. Meanwhile, for smaller expo-
nents one has the bounds

by collecting together the conclusions of Vaughan and Wooley [16, 17, 18]. Indeed,
we reported in [18] that preliminary calculations indicated the validity of the bounds

G(10)<59, G(11)<67, G(12)<76, G(13)<84, G(14)<92, G(15)<100,

though we gave no details of these calculations. It is worth remarking that a number
of authors have obtained estimates weaker than those established (or described) in
Vaughan and Wooley [18] and Wooley [22] (see especially [8, 9, 10, 11}), following
the publication of the papers [18] and [22]. However, the only improvement on the
bounds contained in [18] and [22] known to the authors is a result of Meng [11],
namely that G(20)<143, and this is now superseded by Theorem 1.1.

It transpires that our estimates for the mean values Sgk)(P, R) required in the
proof of Theorem 1.1 are also of use in both localised and unlocalised estimates for
the fractional part of ank.

Theorem 1.2. Let o € R and € > 0. Then when 7<k<20, there is a real number
N (e, k) with the property that whenever N>N (e, k), one has

min_||an®||<NETo®),
1<ng

where o(k)™! = S(k), and S(k) is given by the following table.

k 7 8 9 10 11 12 13
S(k) 57.23 69.66 82.08 94.62 107.27 119.78 132.34

k 14 15 16 17 18 19 20
S(k) 145.02 157.76 170.52 183.32 196.24 209.17 222.16

For comparison, Baker [1] shows that o(k)~! = 2¥~! is permissible in Theorem
1.2 for each k (following Danicic [5]), and describes how Vinogradov’s methods yield
sharper estimates for larger k. We note that Theorem 1.2 provides improvements
on these exponents whenever £>7. When k is large, meanwhile, the conclusion of
Theorem 1.2 of Wooley [22] shows that o(k)~! = k(log k + O(loglog k)) is permis-
sible.

Theorem 1.3. Let « € R and € > 0. Then there are infinitely many natural

numbers n with

lan®(|<n==",
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where T(k)~t = T(k), and T(k) is given by the following table.

k 8 9 10 11 12 13 14
T(k) 57.72 67.25 76.71 86.18 9546 104.77 114.02

k 15 16 17 18 19 20
T(k) 123.24 132.46 141.64 150.82 159.95 169.06

The conclusion of Theorem 1.3 may be compared with Corollary 2 to Theorem
1.1 of Wooley [20], which shows that the exponent 7(k)™! = 9.028k is permissible for
every k (improving on earlier work of Heath-Brown [7]). For smaller k, moreover,
Heath-Brown [7] has shown that 7(k)~! = 3 - 2873 is permissible for k>6. The
conclusion of Theorem 1.3 improves on the latter for k>8. For k = 7, meanwhile,
our methods yield 7(7)~! = 48.13, which narrowly fails to surpass Heath-Brown’s
exponent 7(7)”1 = 48. As noted by Heath-Brown [7], when « is algebraic, the
method used to establish Theorem 1.3 shows, via an application of Roth’s theorem,
that the conclusion of Theorem 1.2 holds with o (k) replaced by 7(k).

Broadly speaking, our proof of Theorem 1.1 follows the pattern of Vaughan and
Wooley [18]. We discuss the salient features of the underlying methods in §2 of
this paper. The calculations involved in the proof are substantial, and thus one of
the major challenges of this paper is the development of a strategy for handling
the inherent complexity of our methods. There are three significant improvements
on the methods of [18] of which we make use. Firstly, we employ the methods of
Vaughan and Wooley [16], together with some refinements described in §5, in order
to better handle the mean values of exponential sums over difference polynomials
on the major arcs of our Hardy-Littlewood dissection. Such methods significantly
enhance our estimates for mean values towards the end of the iteration process.
Secondly, we make use of the new estimates for smooth Weyl sums contained in
Wooley [22]. For larger k, these new estimates alone save several variables in the
representations underlying our bounds for G(k). Finally, in §3 of this paper, we
establish new estimates for mean values of 2-th power moments of exponential
sums over difference polynomials, establishing an important technical refinement of
the corresponding estimates contained in [18]. Although these latter estimates are
of significance only in the initial segment of the iteration process, they nonetheless
lead to improvements in mean value estimates significant to the estimates recorded
in Theorems 1.2 and 1.3. We remark that the highly technical estimates described
in Wooley [21] offer the prospect of further refinements in the mean value estimates
described herein. However, it would seem that for larger k, such improvements are
not significant so far as bounds for G(k) are concerned.

2. PRELIMINARY OBSERVATIONS

In order to put the work of the present paper in its proper setting, we first recall
some of the notation and discussion of [18]. Throughout, k£ will denote an arbitrary
integer exceeding 2, the letter s will denote a positive integer, and ¢ and n will
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denote sufficiently small positive numbers. We take P to be a large real number
depending at most on k, s, € and 7. We use < and > to denote Vinogradov’s well-
known notation, implicit constants depending at most on k, s, € and . We make
frequent use of vector notation for brevity. For example, (c1,...,¢;) is abbreviated
to c. Also, we write e(a) for €27, and [z] for the greatest integer not exceeding .

In an effort to simplify our analysis, we adopt the following convention concerning
the numbers € and R. Whenever € or R appear in a statement, either implicitly or
explicitly, we assert that for each € > 0, there exists a positive number 7(e, s, k)
such that the statement holds whenever R = P", with 0 < n<no(e, s, k). Note that
the “value” of €, and 79, may change from statement to statement, and hence also
the dependency of implicit constants on € and 7. Notice that since our iterative
methods will involve only a finite number of statements (depending at most on
k, s and ¢), there is no danger of losing control of implicit constants through the
successive changes implicit in our arguments. Finally, we use the symbol ~ to
indicate that constants and powers of R and P¢ are to be ignored.

For each s € N we take ¢, = ¢;s (i = 1,...,k) to be real numbers, with
0<¢;<1/k, to be chosen later. We then take

P =2'P, M;=P%, H;=PM™" Q;=Pi(M.. M)"" (0<j<k),
and here, and throughout, the empty product is taken to be unity. We also write
_ J N J
Hy=[[H: and M; =][MR.
i=1 i=1

We define the modified forward difference operator, A7, by

AT (f(x);him) =m™F (f(z + hm*) — f(z)),

and define A} recursively by

;+1 (f(x)§hla---ahj+1§ m1,...,mj+1)
= AT (A; (f(aj);hlw"7hj;m1,-..,mj);hj+1;mj+1) X

We also adopt the convention that A (f(z);h;m) = f(x).
For 0<j<k let

\I/j :\I/j(z;hl,...,hj;ml,...,mj) :Aj (f(z);2h1,...,2hj;m1,...,mj),

By,

where f(2) = (z — hym¥ — - — hjm;

We write

filw)= > elazb), fia)= > e(aah)

J?EA(QJ',R) CCE.A(Q]‘,R)
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and

gj(a) = Z e(az®),

3Q;R7I<2<Q;

and write also

Fi(a) = Y e(a¥;(z;h;m)),

z,h,m

where the summation is over z, h, m with
1<2<P;, M; < mi<M;R, m; € A(P,R), 1<h;<27"H;, (2.1)

for 1<i<j. We define Sgk)(P, R) as in the introduction. Suppose that the real
numbers A\ (1<s < o0) have the property that

Sk (P, R) < P+

Then we say that the Agk) are permissible exponents. Such numbers certainly exist,

since we may trivially take )\gk) = 2s. Then for each s, we define the quantity Agk)

by

AP =25 — k4 AW,
When Agk) is a permissible exponent, we say that Agk) is an admaissible exponent.
When no confusion is possible, we suppress the superscript k.

The efficient differencing process which underlies our arguments is implicit in
the following lemmata.

Lemma 2.1. We have
1 1
/ IFol)? fo0)?| da < PM2 (PM1Q§S + / IFy(a) f1 () da)  (22)
0 0

Further, the inequality (2.2) holds also when fi(«) is replaced by f;* () fori=0,1.

Proof. The inequality (2.2) is immediate from Lemma 2.1 of [18]. Meanwhile, a
consideration of the intermediate underlying diophantine equations reveals that the
replacement of the exponential sums f;(a) by f; () (i = 0, 1) is easily accomodated
within the argument of the proofs of Lemmata 2.2 and 2.3 of Wooley [19], and thus
the second conclusion of the lemma also follows with minimal effort.

Following [18], we abbreviate an inequality of the form (2.2) symbolically by
F02 gs — b f1287

with a similar convention when f; is replaced by f;" (i = 0,1).
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Lemma 2.2. Whenever 0 <t < 2s and 1<j<k — 1, we have
1 o~ —~—
/ |Fy(0) f3(0)%] da < P(QM)VA(HMMETHAT, )2, (2.3)
0

where

1
T AT A2s—t s—
Tj11 = PH; M1 Q5 +/ |Fj1(a) fipa ()% da. (2.4)
0

Further, the inequality (2.3) holds also when f;(a) is replaced by f;7(a) for i =
J,j+ 1
Proof. The first conclusion of the lemma is immediate from Lemma 2.2 of [18], on
correcting a typographic error in the statement of the latter. The second conclusion
of the lemma follows as in the proof of Lemma 2.2 of [18], on making use of Lemmata

2.3 and 3.1 of Wooley [19], the replacement of the exponential sum f;(a) by f;7 (c)
(i = 7,7+ 1) leading to minor cosmetic changes only.

Lemma 2.3. Whenever 0 <t < 2s and 1<j<k — 1, we have
1 R o B
/ |Fj(a) £ () da < PE(Q) Y2 (H; M M5 )2, (2.5)
0
where

1
7 T AT A2s—t s—2t—
Tjy1 = PH; M1 Q5 +/0 |Fir1(a)gi1(@)? fira (@) 2 da. (2.6)

Proof. The proof is based on the use of Lemmata 2.3 and 3.1 of Wooley [19], in
a manner similar to the proof of Lemma 2.2 of Vaughan and Wooley [18]. By
applying Schwarz’s inequality as in the proof of Lemma 2.2 of [18], we find that

' 2s ' 2t vzt 2 4s—2t 1/2
1m0 @ da < ([ 157 @Pda) ([ I @2 (@) da)

(2.7)
But on considering the underlying diophantine equations,

1 1
|1 @Pdas [ 5P da < @) (2:8)
0 0

and by the argument of the proof of Lemmata 2.3 and 3.1 of [19], again noting that
the replacement of f;(a) by f;"(a) is easily accomodated, one finds that

1
AMWWﬁ@“%m<ﬁ%%w$%%Hmm@ﬁ“H%y
(2.9)
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where T, denotes the number of solutions of the diophantine equation

25—t

Wj1(z;hym) + Z ($§i—1 - 5’/']22) =0, (2.10)
i=1

with z,h, m satisfying (2.1) for 1<i<j + 1, and with z; € A(Qj4+1,R) and z; >
%QjHR_j —1 for 1<i<4s — 2t. Here we note that our summation conditions differ
from those of (3.3) of [19] only by virtue of the notation defined above, and the
latter condition on the z;.

Let Tjt_l denote the number of solutions of the diophantine equation (2.10) with
z, h;, m; satisfying (2.1) for 1<i<j + 1, and with

1Qi R <3, 22<Q 41 and  x; € A(Qj41, R)  (3<i<ds — 2t).

Then it is evident that 77 +1<Tj7:_1, and moreover, on considering the underlying
diophantine equations,

1
T :/ Fy1(a)lgjyi(a)® fi ()72 |da<T) 4.
0

The conclusion of the lemma therefore follows by combining (2.7)-(2.9).

We abbreviate inequalities of the form (2.3) and (2.5) symbolically by

4s—2t
Fiff* — Filfj

j+1
f2
J
and 0 A
+ 2 §—2t—2
Fif; » Figia i
r2
j
respectively.

The integrals on the right hand side of (2.2), (2.4) and (2.6) may be estimated
in two ways other than simply repeating the efficient differencing process.
Firstly, we may apply Holder’s inequality in the form

1
| 1B @)@ da < 11,0203 (211)
0

where

1
Im:/ Fy(e)" da (m=1,1+1)
0
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and )
U= [ 15@)P" da (w=v.w),
0

in which [, v and w are non-negative integers, and a, b, c,d are non-negative real
numbers with

at+bte+d=1, 2a+2Mb=1, ve+wd=s.

The 2™-th power mean values of F; may be estimated in terms of the number of
solutions of certain diophantine equations, as we describe below. Also, we have
U, < Q?“Jre and U, < Q?‘”E. We abbreviate an inequality of the shape (2.11)
symbolically by

Fif? = (F2)4(F2 )P (£2)e(f20)

We discuss such inequalities further in §4 below.

Secondly, we may apply the Hardy-Littlewood method along the lines of Vaughan
and Wooley [16]. We then abbreviate the resulting inequality symbolically in the
form

i f7° = (Fy)(f7)
or
Fg [ = (F)(g: f77%).

We discuss the material from [16] required in this paper in §5 below.
By considering the underlying diophantine equations, we have

1
Sui1(P.R)< / |Fol)? fola)?| da
0
Also, on writing

H(o; Q) = Z e(az®) and h(o;Q) = Z e(az®),
1<2<Q z€A(Q,R)
z>Q/2

it follows from a consideration of the underlying diophantine equations and Holder’s
inequality that

2s5+2
do

1 oo
Scr(PRIS [ | 30 hei2 ')+ H(ai VP)
2’<\(}ﬁ

1
< P** 4 (log P)*s 12 [max / |h(c; 27 P)[*T2da
Le<oo 0

2'<VP

1
< P4 pe  max / |H(c;27P)*h(; 27 P)* |da.
KL1<oo 0

2i<VP
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Since the last integral has the shape

1
/0 Fo(@)? /5 ()] da,

it follows in either case that we may use a sequence of connected inequalities (in the
obvious sense) to bound S, (@, R) in terms of S;(Q’, R) (t = 1,2,...). By optimising
parameters one obtains in this way a permissible exponent A, for which

S.11(P, R) <« PAs+1te,

The use of such inequalities within an iterative process is discussed in detail in §2 of
[18]. While we avoid detailed discussion of such issues, we will indicate the manner
in which optimal parameters are to be found. Notice that whenever the methods
of this paper establish that A\s;; is a permissible exponent, then on considering the
underlying diophantine equations, it is apparent that they also establish the upper
bound

1
/ Fo()2f (0)%|da < PM1+e, (2.12)
0

since our starting point in deriving such a permissible exponent is an application of
Lemma 2.1. Either the mean value on the left hand side of (2.12) occurs explicitly
in the latter application, or else a similar expression in which fo+ is replaced by
fo, and of course a consideration of the underlying diophantine equations readily
confirms that this last mean value majorises the former.

Finally, having established estimates for the mean values S, (P, R), one must still
employ these bounds within the proofs of Theorems 1.1, 1.2 and 1.3. We discuss the
latter details in §56 and 7. The calculation of the exponents )\gk)
computation of G(k), 7(k), o(k) we defer to §§8 to 23.

, and subsequent

3. ESTIMATES FOR THE NUMBER OF SOLUTIONS OF AUXILIARY EQUATIONS

In this section we explore some technical refinements of the methods of §3 of [18]
concerning the moments of the exponential sum F}(«). Before proceeding further

we require some notation. Let R;S)(P; ¢) denote the number of solutions of the
diophantine equation

Z U, (zi; h(i);m(i)> = Z U <wi;g(i); n(i)> , (3.1)
i=1 i=1
with o
1<z, wi<Py,  1<h{”, g <2/ ~*Hy, (32)

M, < mgi),ngi)éMtR, m,(fi),ny) € A(P,R), (3.3)
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for 1<t<;j and 1<i<s. Also, we put J = [3(k — j)], and define K;(P; @) to be the
number of solutions of the system of diophantine equations

J
SR (mEt -0t =0 (1<r<), (3.4)
1=1

with h, m and n in the ranges defined by (3.2) and (3.3).

It transpires that the estimates for Rg.s) = R;S)(P; @) that are presently attain-
able are of interest only when s is a small power of 2. Moreover, one may bound

R;zl) in terms of RJ(QZ_I) and Rﬁ)l as follows.

Lemma 3.1. When 1<I<k — 2 and 1<j<k — 1 — 1, one has

1 l_ 4,0 =~ ol -1
RV (Pigr,....05) <P* "L H;M;)* R D (Pi¢n,....0;)
—|—P2l+1_2l_2(ﬁj]/\\l/j)zlﬂ_zRﬁ_)l(P; é1,...,05,0,...,0).

Proof. This is a natural development of the proof of Lemma 3.1 of [18]. On con-
sidering the underlying diophantine equations, it follows from (3.1) that

1
1 I+1
R§2>(P;¢):/ 17y ()2 dav
0
Write
U;i(zshymsu) = A7 (P (z;hym); w1, .0, 1),

in which u = (uq,...,4;). Then by applying standard Weyl differencing (see, for
example, Lemma 2.3 of Vaughan [15]), an application of Hélder’s inequality reveals
that

[Fy(@)” < P* 7N (H;My)” + P (H M) G

where

Ga)=> Y - ¥ > e(aW(2 h; m; w)),

hm 1<u; <Py 1<u <Py 1<2<Pj—u1——uy
z€I(u)

and here I(u) denotes an interval depending only on u, and the summation over h
and m is over the ranges given in (3.2) and (3.3). Thus we deduce that

1
l 1 ~ —~ 5l l
R (P; ¢) <P? " (H;M,)? /0 |F;())? dax

1
PR () / G(a) Fy()?' |do
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An application of Schwarz’s inequality, combined with a consideration of the un-
derlying diophantine equations, therefore reveals that

RP)(P;¢) <P ~1(H;M;)* RS (P; )
PN (B (Pg)s)
where S denotes the number of solutions of the equation
Vji(zshymyu) = ¥, (w; gin; v),
with the variables h, g, m,n in the ranges defined by (3.2) and (3.3), and with
1<u;, v; <Py (1<i<l),

1<Z<PJ_UI—--.—UZ, lgwgpj—/vl—..._vl.

But we have

2AF(T,(z;h;m);us 1, ..., 1)
= A7 ((22 = 2hymy — -+ = 2hym5)*; 4h, 2u;m, 1, 1)
=V, 2z +u 4+ +uw;2h,u;m,1,...,1).

The desired conclusion therefore follows on noting that

2Z+U1+'~'+Ul<2pj<Pj+l.

The methods of §3 of [18] provide a bound of the shape
RV (P; ¢) < PYEK;(P; ¢)

when j = 1, and for 1<j<k—2 in circumstances in which k—j is odd, and also when
k —j = 2 or 4, but in all other circumstances the bounds obtained are somewhat
unsatisfactory. Our primary aim in this section is to treat as many of the cases in
which k£ — 7 is even as is practicable. We handle the latter cases by making use of
an estimate for the number of integral points on certain affine plane curves due to
Bombieri and Pila [2] (this idea was mentioned to us in a conversation by Professor
E. Bombieri in early 1991).

Lemma 3.2. Let C be the curve defined by the equation F(x,y) = 0, where
F(z,y) € Rlz,y| is an absolutely irreducible polynomial of degree d=2. Also,

let N>exp(d®). Then the number of integral points on C, and inside a square
[0, N] x [0, N], does not exceed

NY4exp(12(dlog N loglog N)/?).
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Proof. This is Theorem 5 of Bombieri and Pila [2].

Before announcing the new estimate at the heart of this discussion, we recall
from §3 of [18] that for each j and k one has

j hlml . (hjmf)%j
Uj(zhim) = k1270 . hy Y Y - Z G0 DT @0+ DT

u>0wv1 20 v; 20

where the summation is subject to the condition w + 2vy + --- 4+ 2v; = k — j.
Consequently, when k£ — j is even, one has that

J
U,(z;h;m) = hchr ham¥, ... hm) (3.5)
r=0
where the ¢, (&1, ...,&;) € Z[£] are polynomials with positive coefficients which are
symmetric in £7, ..., &7 of degree J —r (0<r<J).

Lemma 3.3. Suppose that 1<j<k —6 and k — j is even. Then

R\(P; ¢) < PV K;(P; ¢) + PY3+ H;M2.

Proof. Observe first that in view of (3.5), the polynomial ¥;(z;h;m) is divisible
by hi...hj. The argument of the proof of Lemma 3.2 of [18] therefore shows that

RV (P; ¢) < P*R;(P; ). (3.6)
where now we write R} (P; ¢) for the number of solutions of the equation
¥;(z;hym) = ¥;(w; h;n), (3.7)
with 2z, w, h, m, n satisfying
1<z, w<Py, 1<h<277'H;, my,n; € AP, R)N (M, M;R] (1<i<j). (3.8)

We divide our argument into cases. Let Ry denote the number of solutions of the
equation (3.7) counted by R}(P;¢) in which

co(hlm’f,...,hjm?) = co(hln]f,...,hjn’?), (39)

and let R; denote the corresponding number of solutions in which (3.9) does not
hold. Then one has
R;(P, (f)) = Ro+ R;. (310)

Observe first that if z,w, h, m,n is any solution of (3.7) counted by Ry, then it
follows from (3.5) and (3.9) that

J J
22 Z cr(hamb, ... 7hjm?)Z%*Q = w? Z cr(hank, ... 7hjné?)w%*? (3.11)

r=1 r=1
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When t and x are positive integers with 1<z <P}, and h satisfies (3.8), denote by
r(n;z,t;h) the number of solutions of the simultaneous diophantine equations

J
2 k kY, 2r—2
x E cr(hamy, ..., hymi)x =n,

r=1

Co(hlmlf, PN ,hjm?) = t,

with m satisfying (3.8). Then it follows from (3.11) via Cauchy’s inequality and an
elementary estimate for the divisor function that

Ry = iiZ( Z r(n;x,t;h)>2

n=1t=1 h 22|,
1<z<P;

<PEZZZ Z r(n;z,t;h)?

n=1t=1 h z2|n
1<z<P;

where the summation over h is subject to (3.8). Thus it follows that
Ro < P°RY, (3.12)

where R denotes the number of solutions of the simultaneous diophantine equations

Mk‘

(cr (hymk, ... hjmé?) —cp(hnk, ..., hjn;“)) 2272 =, (3.13)
r=1

Co(hlmlf, ceey h]m‘];) - Co(hlnlf, cee ,hjn?) = O, (314)

with z, h, m, n satisfying (3.8).

Consider next the solutions of the system (3.13), (3.14) in which
cr(hamb, ..., hjm?) 2 cp(hank, ..., hjn?)
for some r with 1<r<J. We may assign h, m and n in O(ij]\Ajjz) ways. Fixing
any one such choice, it follows that z is determined by the non-trivial polynomial
equation (3.13). Then there are O(1) possible choices for z, and consequently the
total number of solutions counted by Rg of this type is O(H,; M ]2) The remaining

solutions z, h, m,n of the system (3.13), (3.14) counted by Rj satisfy the system

k ky _ k k

cr(himy, ..., hym7) = e, (hing, ..., hynj) (0<r<J), (3.15)

with the variable z unconstrained. On recalling that the polynomials ¢,.(§) have
positive coefficients and are symmetric in £2,. .. ,{? of degree J —r (0<r<J), we
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find from (3.15) that the equations (3.4) are satisfied. Consequently, the number of
possible choices for h,m, n is at most K;(P; ¢). We may therefore conclude that

Ry < H;M? + PK;(P; ). (3.16)

On noting that the diagonal solutions of (3.4) alone yield > H j]\AJ/j solutions, and
recalling that our hypotheses on ¢ dictate that MJ < P, we find from (3.12) and
(3.16) that

Ry < P K;(P; ). (3.17)

Let h, m, n be any one of the O(ﬁlj ]\/ZJQ) possible choices satisfying (3.8) for which
the equation (3.9) does not hold. Write

J
F(z,y) = Z (cr(hlm'f, ey hjm?)x’" — ¢ (han¥, ... ,hjn?)yr) .
r=0

Then it follows that for this fixed choice of h, m, n, the choices of z and w to be
counted by R; satisfy the equation

F(22,w?) =0, (3.18)

with 1<z, w<P;, and moreover the constant term in (3.18) is non-zero. Suppose
first that the polynomial F'(z,y) is absolutely irreducible. Then it follows from
Lemma 3.2 that the number of possible choices for x and y with 1<z, ngjQ, sat-

isfying the equation F(z,y) = 0, is O(P?//*¢). Hence the number of solutions of
the equation (3.18) with 1<z, w<P; is similarly O(P?//+¢).

If, on the other hand, the polynomial F'(z,y) is not absolutely irreducible, then
one may write F'(x,y) as a product of absolutely irreducible factors, say

l m

F(l‘,y) = ng’(x;y) H he(x,y), (319)

i=1 e=1

where [ +m>2, and where g;(z,y) € Rlz,y| (1<i<l), and

he(@,y) = ue(z,y) +ve(z,y)V=1  (1<e<m),

with ., v, € Rz, y]. We may suppose, moreover, that for each e the polynomials
u. and v, have no non-trivial polynomial common divisor over C|z, y]. It therefore
follows from Bezout’s Theorem that the number of solutions of the simultaneous
equations u.(z,y) = ve(z,y) = 0 is bounded above by J2. By considering real and
imaginary components, therefore, the number of integral solutions of the equation
he(x,y) = 0 is also bounded above by J2. If the degree of g;(z,y) exceeds 2 for
any 4, then the absolute irreducibility of g;(z,y) ensures, via Lemma 3.2, that the
number of integral solutions of the equation g;(x,y) = 0, with (x,y) € [O,sz]2 N
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72, is O(PQ/ 3+€). Consequently, it follows from the conclusion of the previous
paragraph together with (3.19) that the number of solutions of the equation (3.18)
with 1<z, w<P is O(P?/3+¢), except possibly when F(z,vy) factorises in the form
(3.19) with one at least of the g; having degree one or two.

Suppose then that for some i with 1<i<l, the polynomial g;(z,y) is quadratic
or linear. If g;(z,y) is not some constant multiple of a Q-rational polynomial, then
since g;(x,y) is necessarily a constant multiple of a polynomial with algebraic coef-
ficients, we deduce that the number of integral solutions of the equation g;(x,y) =0
is at most O(1). For we may remove the constant factor and consider components
with respect to some basis for the field extension containing the coefficients of
gi(z,y). Then since g;(z,y) is not a constant multiple of a Q-rational polynomial,
it follows that the integral zeros of the polynomial g;(x,y) necessarily satisfy at
least two linearly independent (Q-rational equations, whence the desired conclusion
follows from Bezout’s Theorem.

Suppose next that for some i with 1<i<l, the polynomial g;(z,y) is quadratic
or linear, and has integral coefficients, as we may. Observe that the homogeneous
part of F(z,y) of maximal degree has the shape a(z’ — y”), for a certain positive
integer a. Thus any quadratic factor of F'(z,y) must have homogeneous part of
the shape a1¢(z,y), where oy is rational and ¢(z,y) is a divisor of 2/ — y/ with
rational coefficients. By cyclotomy, the only possibilities for ¢(z,y) are therefore
2?2 +y? and 22 &+ zy + y2. Further, similarly, any linear factor of F'(z,y) must have
homogeneous part of the shape as(x + y), where ay is a rational number. In the
latter case one has that g;(z,y) has the shape a(x + y) + ¢, for a certain non-zero
integer a, and an integer c¢. Moreover, since the constant term in (3.18) is non-zero,
one has ¢ # 0. But then the number of solutions z,w of the equation (3.18), with
1<%z, w<P;, which arise from the vanishing of the factor g;, is bounded above by
the number of solutions of the equation

a(z? £w?) +c=0, (3.20)

with 1<z, w<P;. But standard estimates for the number of solutions of such qua-
dratic equations (see, for example, Estermann [6] or Lemma 3.5 of [18]) reveal that
the number of solutions of the equation (3.20) counted by R; is at most O(P*).
If, on the other hand, the polynomial g;(z,y) is in fact a quadratic polynomial
with rational coefficients, then in view of our earlier observation we may make a
non-singular rational change of variables, x = u+ C, y = v+ Cs, so that the poly-
nomial g;(x,y) takes the shape a¢(u,v) + ¢ with a and ¢ integers, and with ¢(u,v)
as above. The absolute irreducibility of g;(z,y), moreover, ensures that ac # 0.
But then again the theory of binary quadratic equations ensures that the number
of solutions of the equation g;(2%, w?) = 0, with 1<z, w< P}, counted by R; is once
more at most O(P?).

Combining the conclusions of the previous four paragraphs, we find that for every
fixed choice of h, m, n satisfying (3.8) for which the equation (3.9) does not hold,
the number of possible choices for z and w satisfying (3.7) is at most O(P?/3+¢).
Consequently,

Ry < PY3TH; M3, (3.21)
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We therefore conclude from (3.6), (3.10), (3.17) and (3.21) that
RV (P;¢) < PR (P; ) + PP H, M,

whence the lemma follows immediately.

On combining the conclusion of Lemma 3.3 with Lemma 3.1, we are able to
obtain mean value estimates for 2/-th moments of Fj(«) which, in many circum-
stances, are superior to those available hitherto. We summarise such new estimates,
and recall those previously known, in the following theorem.

Theorem 3.4. Suppose that 1<I<Sk — 2 and 1<j<k —1—1. Letv =1[j/2], J =
[%(k‘ —j—1+ 1)] and for r=1 write §, = )\1(~2Jk) —r. Suppose that 9§, is increasing
with r, and let e be 0 or 1 according to whether j is even or odd. Finally, define
the exponent o in general by taking o = §;/j, and when (k + 023,45y — 20,4 1) $1<1
(f =0,e), by taking o = (8, + 0p+e)/j. Then the following hold.
(Ia) Unconditionally, if j = 1, or
(Ib) if any one of the following conditions hold,
(a) 1 =1 and k — j is either odd, or k —j =2 or 4, or
(6) 1 =2 and 3<k — j<b, or
(v) I=3andk—j=4 or5, or
(8) dr+---+ dy<d,
and in addition any one of the following conditions also hold,
(1) 1<j<I + 1, or
(17) 24+ e<j<2J+2—e and (k+d1c)p1<1, or
(131) when j>=3, we have

I
> ¢i+k(dro1+61)<2 (3<KI<)),
=1

then one has

1
l L jae772l 130l
/0|1L7j(a)|2 doo < P> 7N T HT L

(Ic) If any one of the conditions (a), (8), (v), or
(8) g1+ +d5<z(l—0a)7,
hold, and none of (i), (it), (ii1) hold, then one has

1
/0 |Fj(a)|? da < P2 -Hep o g2

(1)

(1) one of conditions (i), (i), (iii) hold, and ¢1 + -+ + ¢;>3%, or

(2) none of conditions (i), (ii), (iii) hold, and ¢1 + -+ ¢;=23(1 — o)1,
the

R

S

1
/0 Fy(0)|? do < PE—t=+= 012 21,
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(III) In any case, one has
1
l 1 ~5l ~ol
/0 |Fj(e)|* do < P2 MM HE

Proof. For the sake of convenience, write m = [ — 1. We begin by noting that
M, <P'/? for k>3, so that by combining the conclusions of Lemma 2.1 of Vaughan
[14], Lemma 3.3 of [18], and Lemma 3.3 of the present paper, we conclude for j = 1
that

RY (P;¢p,0) < PY*(PTH)M,; (0<r<m). (3.22)

g+
Suppose next that one of the conditions (i), (ii) or (iii) holds. Then the argument
of the proofs of Theorems 3.10 and 3.11 of [18] shows that

K ir(P;¢,0) < P*(P"H;)M; (0<r<m). (3.23)

When conditions («), () or (v) hold, it follows that for 0<r<m, the integer k—j—r
is either odd, or else is equal either to 2 or 4. In these circumstances, Lemma 3.3
of [18] shows that

RV (P;$,0) < P K, (P;$,0) (0<r<m), (3.24)
whence the estimate (3.22) follows from (3.23). When condition (4) holds, on the

other hand, one has J\//.TJ < PY3 and so we may conclude from Lemma 3.3 of the
present paper together with Lemma 3.3 of [18] that for 0<r<m,

2 £ ’I“~ T
(P;#,0) < P'*°K;,.(P;¢,0) + P5te(P"H;) M

< PYK; (P $,0) + P (P H;) M.

M
R\,

Here we note that the former lemma applies when £ — j — r is an even integer
exceeding 4, and the latter when £ — 5 — r is odd, or equal to 2 or 4. Thus the
estimate (3.22) again follows from (3.23).

When none of the conditions (i), (ii), (iii) hold, meanwhile, then the argument
of the proofs of Theorems 3.10 and 3.11 of [18] yields the estimate

Kjr(P;¢,0) < PP M7 (3.25)

Since (3.24) again holds when conditions («), () or () are satisfied, we deduce
from (3.25) that when one of the latter conditions holds, one has

(1)

(P;¢,0) < P™(PTH,)M}™  (0<r<m). (3.26)
When condition (§’) holds, meanwhile, one has Mjl_” < P23, and in such cir-
cumstances one may conclude from Lemma 3.3 of the present paper together with
Lemma 3.3 of [18] that for 0<r<m,

RO

i (P ,0) < PYEK (P; ¢,0) + PST(PTH;) (M7 Ps),
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and hence (3.26) again follows from (3.25).

When condition (1) of the statement of Theorem 3.4 holds, one has M; > P'/3,
and thus from Lemma 3.3 of the present paper, Lemma 3.3 of [18], and (3.23), one
obtains in a manner similar to that above,

R

D (P;,0) < P3+E(PTH,)M?  (0<r<m). (3.27)

j
When condition (2) of the statement of Theorem 3.4 holds, meanwhile, we have
Mjl_(I > P'/3, whence by Lemma 3.3 of the present paper, Lemma 3.3 of [18], and

(3.25), one obtains the estimate (3.27) once again. Finally, we note that Lemma
3.2 of [18] provides the bound

R

D (P;$,0) < PYE(PTH;)M? - (0<r<m). (3.28)

J

On collecting together (3.22), (3.26) and (3.28), we find that in all cases one has
a bound of the shape

R

(P 9p,0) < PYE(PTH)MIT™  (0<r<m), (3.29)

where 7 = 0 when conditions (Ia) or (Ib) hold, where 7 = ¢ when (Ic) holds,
where M7 = M;P~'/3 when (II) holds, and where 7 = 1 when (II1) holds. We
now apply Lemma 3.1, obtaining from (3.29) for 1<r<m the estimate

r r ~ —~ r r—1
RV (P ¢) <P? "1 (H;M;)* R? (P ¢)

I PQTH_Q”_Q(?IJJ\%)TH_Q (Pr+1+eﬁ]j]\“jj1+r>

P UL By L B
<P Hj Mj

r_ ~ r 27”—1
+ PP NH MY RY (P ). (3.30)
Then by inductively applying the formula (3.30), starting from the base
1) p. 1+e 77 A7l+7
R; (P;¢) < P H;M;
supplied by (3.29), one deduces that for 0<r<m, one has

2"/ p. 21t e qepp2rtl o1 2t 14
Rj (P, ¢) < P Hj Mj .

The conclusion of the theorem follows from the case » = m of the latter formula,
on considering the underlying diophantine equations.

For the sake of completeness we add a final mean value estimate related to those
of Theorem 3.4 to our arsenal.
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Theorem 3.5. Suppose that 2<I<k — 2. Then one has

1
— ~ ol

Proof. On considering the underlying diophantine equations, the argument of the
proof of case (III) of Theorem 3.4 leading to (3.29) yields

R, (P;,0) < PY*<(P"H,_;)M2_, (0<r<i—2). (3.31)
Moreover, it follows from (3.1) and the definition of R,(Cl_)l(P; ¢,0) that
R" . (P;$,0)<M}? | R*, (3.32)
where R* denotes the number of integral solutions of the equation
21 ... 2th1 . he_p = w1 ... wig1 ... gr_i, (3.33)
with 1<z, w; <Pp_; (1<i<]) and 1<h,, g, <2FH,, (1<n<k —1). Let z,w, g, h be a

solution of (3.33) counted by R*. Standard estimates for the divisor function reveal
that for each fixed choice of z, h, one has O(P*¢) possible choices for w, g, whence

R* = O(P'"¢H,_;). By (3.32), we therefore have
R;(j_)l(P; ¢,0) < PEME_ Hyy,

so that (3.31) holds also when r = [ — 1. The lemma now follows by applying
Lemma 3.1 inductively in the same manner as in the proof of Theorem 3.4.

4. ITERATIVE SCHEMES BASED ON MEAN VALUE ESTIMATES

In our mean value based treatments we adopt two approaches, according to the
situation. We consider below the consequences of estimates of the form

1 . .
/O |Fj(0)[2 dov < PP —1mxscke 2 14T =1 (4.1)

for a suitable 7;,;>0, and x;,; = 0 or % We suppose in what follows that A\, (r € N)
are known permissible exponents, and we seek a new permissible exponent \..

(i) Process A‘;’l. When s>j we may adopt the scheme

i
! .
BT = BT Baff 0 BTV S (BT () ()"
l l 2s—2j5+4
125 228_2 fjjl "
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where t, as and bg are defined by means of
t=[1-27)"s—j)+1, o=t—(1-27)""(s—J),
as=(1-2790, by=(1-2"H(1-80).
Following the argument of §2 of [18] (see also §11), and recalling the definitions of
the parameters from §2, it follows from (4.1) that A, and ¢ are determined by the
equations

~ e~ . _ Cyo—lrry_o-l=r1-27 1—7; At—14+bsA
PHj—leQj j %Pl (I4+x5,1)2 Hjl 2 M. ( TJ,Z)Q?S t—1tbsAt

7 Y

o _ . | N2
PH, 2 MQY ~ (PUHM)? M QM) (2<i< - 1),

i+t1 i+l (12)

>\sfl 2 2s—4 A )\572 1/2
PMQ7 ~= <P(H1M1> M5°77Q7° Q5 ) ) (4.3)
PN o~ PMZT2Q0 (4.4)

Here and throughout, we use the symbol ~ to denote that factors involving R and

P¢ to fixed powers are to be ignored.
Write

6= (2" —1)(ON—1 4+ (1 —O)N) — 2'N_5,
Ei = As—it1 — 2 F Asmim1 (16 < ), (4.5)
ki =2(s—1) — Ay (2<6<).
Now define «;, 3;, v; for 1<i<j by
aj=(2' =Dk +o+1—70)7"
Bj=—-k+06+1—15y,
v =2 =148 —j— x5,

and for : = j —1,...,1, successively by
i = 1+ & + Kip10641%ig1,
Bi = & + Kiv10641Pi11, (4.7)

a; = (2k+ 3;) 7"

Then on writing explicitly the equations relating the ¢; described above, and solving
the resulting system of linear equations, one verifies with little difficulty that ¢ and
A% satisfy

¢i =a; (v — Bi(¢1 + -+ di1))  (2€0iy), (4.8)
1 = 171,
and
A= Xs_1(1 — 1) + 1+ (25 — 2)¢s. (4.10)

In this manner we may calculate a new permissible exponent A\, and in concert
with other available iterative schemes we repeatedly derive new sequences () of
permissible exponents, ultimately attaining an approximation to converged values
(see the discussion of §2 of [18] for a detailed overview of such matters).
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(ii) Process B;tl When s>j and

(1-27)" s — << -2 (s — ),

we may instead adopt the scheme

FO 25—2
le 2 25—4 25—6_, 25—2j 2l=1yq 2UNb. oty =L
Ffy =B fy = Fafs = = B :>(Fj )S(Fj)&(fj)t
l 2l 2 2s—2j4+4
7 5 fj—l ’

where as and bg are defined by
a;=2-2""1—2(s —t7, by=(s—j)t Tt —1+270

Following the argument of §2 of [18] (see also §11), it follows from (4.1) that X,
and ¢ are determined by the equations

Pﬁjilﬂ“@@;sﬁ o P2 =G - 1)as (20 1= xg,0)bs (ﬁj]\z)(zl—lq)aﬁ@lq)bs

A7sTi1—1+bsTi 1 A A (s—7)/t
X Mj ’ s Qj ,

and the equations (4.2)-(4.4).
We now write
§=2(s — j)A — 2tAs_;,
and define &; and k; as in (4.5) and (4.6). Also, we define in this case a;, (3;, y; for
1<i<j by means of

2(s— ) (k—1)+2t+6+7)",

(k—1)(s—j—t)+d+T,
G+1—2)(s—j—t)+t2-227H+6—7x,

2
2

in which
F=A4(s—j)— @ —2271 + ((2—22"Ht —2(s — 5)) 751,

X =((4 =227t —4(s = ))xga-1 + (2(s = §) = 12 = 227)xu,

and for i = j — 1,...,1, successively by (4.7). Then we find once again that ¢
and )\, satisfy (4.8)-(4.10), and once more we are able to establish new permissible
exponents by iterating this and allied procedures.

Notice that both processes Aj’l and B;é apply in particular when j = 1, in which
case they may or may not duplicate the methods of Vaughan [13, 14].
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5. ITERATIVE SCHEMES BASED ON THE HARDY-LITTLEWOOD METHOD

We next investigate estimates arising from iterative schemes of the shape

R g3
l2 2 2s—4 25—6 25—2j 25—2j
P =Ry S R = — ijjs = (Fj)<fj8 7) (M)
! ! .
25 2s—2 25—25+4
1 2 fj—l
and
2s—2 2s—2 2s—4 25—6
! !
2s 2s—2
1 2
25—2j+2 25—25—2 25—2j—2
= Fiafi, — Fig £ = (i) (g3 £;°7777) -
My
25—2j+6 25—2j+4
fj—2 fj—l

A perusal of the arguments of [18] should convince the reader that the derivation
of bounds close to optimal via the Hardy-Littlewood method in such schemes is a
matter of considerable complexity. We therefore strive for simplicity, sacrificing a
little on performance.

In the first iterative scheme above, we estimate the mean value occurring in the
final step of the iterative procedure by means of Lemma 13.1 of [18], which we
record in a slightly more general form. We first require some notation.

Definition 5.1. Suppose that k>4 and 1<j<k — 3.
(1) Let M; denote the union of the intervals
M;(g,a) = {a €[0,1) : |ga— a|<PQ;*RI™M],

with 0<a<q<P and (a,q) = 1. Also, let m; =[0,1) \ M;.
(it) Define w; to be 0 when j = k — 3, and to be 1 when 1<j<k — 4. Also, write
w; = 21 +i—k,

(i1i) Let N; denote the union of the intervals
Ny(g,a) = {a €[0.1) : |ga —al<(PM ) F=DQ ),

with 0<a<q<(PM7 )1 5=9) and (a,q) = 1.

We note that the (¢, a) comprising M; are disjoint, and likewise also the
MN;(q,a) comprising N;.

Lemma 5.2. Suppose that k>4 and 1<j<k — 3. Let u be a positive integer, and

define
po [(Fod Y ) e (FAEY
k—7j k—7j
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Suppose that A;_1 and Ay are admissible exponents, and write

k—3j
w= (0N + (1 - 0)A,).
o= 1 [ (0A-1 + (1= 0)A:)

Then

1
1B @ lda < PTG ((PAF) QR + Q) )

Proof. When 1<j<k — 4, the stated conclusion is provided by Lemma 13.1 of [18].
When j = k — 3, meanwhile, the conclusion follows from the argument of the proof
of the latter lemma, noting that by a Weyl differencing argument paralleling those
of Lemmata 6.1 and 12.1 of [18], it follows from Lemma 4.1 of [18] together with a
trivial estimate that

We next consider the second of the iterative schemes above, but in order to make
further progress we require some additional notation. When k>2, we write

Si(q,a) = Z e(ar®/q),

r=1
and define also the multiplicative function wy(q) by taking

k;p_“_%, when ©>0 and v =1,

uk+v\ __
Wi \p =
( ) { p~ %1 when u>0 and 2<v<k.

Note that there is some possibility of confusion between the function wy(q) and the
exponent w;, but that a perusal of the context should easily dispel any ambiguity.
Then according to Lemma 3 of Vaughan [12], whenever a € Z and ¢ € N satisfy
(a,q) = 1, one has

¢ P <wi(a) < gV, (5.1)

and
g~ ' Sk(q, a) < wi(q). (5.2)

We require the estimate contained in the following lemma.

Lemma 5.3. Suppose that k>4 and 1<j<k—3. Then whenever o € N;(q,a) CN;,
one has

gj(e) < Qi wi(q)(1 + Q% la — a/q)) ™" + PE(PM7 )z kI,



24 R. C. VAUGHAN AND T. D. WOOLEY

In particular, whenever Q;=(PM;{7)*i(*=3) " one has
g5(@) < Q;  wi(g)(1 + Qfla — a/q|) ™"

Proof. On making use of the refinements embodied in Theorem 4.1 of Vaughan [15],
we deduce that whenever o € M;(q,a) C N;, one has

gi(a) = ¢ Sk(g, a)v} (8) < g2 (1+ Qfla — a/q))"/?,

where

Qj N

vl (B) = / e(By")dy

3Q;R™I
By partial integration, one readily deduces that
Q; Ri(k=1)
1+Qk 8

On recalling (5.2), therefore, we deduce that for a € 91;(¢q,a) C 915, one has

wi(9)Q;*°
1+ Q%la—a/q|
This establishes the first conclusion of the lemma. When Q;>(PM ™7 )ws(k=3) it
follows from (2.1) and (5.1) that for a € 9;(¢q,a) C 91;, the first term on the right

hand side of (5.3) majorises the second, up to a factor of P¢. The second conclusion
of the lemma is now immediate.

v (B) < min{Q;, (Q;R™)' B} < et

gjla) < + PE(PM7)3wi (ki) (5.3)

We must also estimate Fj(«) for v € 91, in order to prosecute the estimation
required for the use of the second iterative scheme. In this context, we write

7:(g, a,h, m) = ‘Z( rhm))‘

and then define F}(a) to be zero whenever a € m;, and by
_ Pq~'7j(q,a,h,m)
a) = ; g (1+|o — a/qlhy ... h;PF—3)/ (=)

when o € M;(q,a) € M;. Here, the summation is over m and h satisfying (2.1).
Finally, we define g7 (a) to be zero for a € nj, and by

g; () = Q5 wi(a)(1 + Qfla — a/ql) ™,

when a € 91;(q, a) € IN;. We observe that this definition of g7 () differs from that
provided in §2 of Vaughan and Wooley [16], but not in a manner damaging to our
subsequent argument.

We now describe an auxiliary lemma which may be of interest beyond this work.

Our treatment here is motivated by the proof of Lemma 3.1 of Briidern and Wooley
[4].
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Lemma 5.4. Suppose that k=4. Let QQ be a real number with 1<Q<P. Let M
denote the union of the intervals

M(q,a) = {a €[0,1) : |ga —a|l<QP™"},

with 0<a<q<Q and (a,q) = 1. Let § be a real number with 6 > 1, and define the
function Y («) for a € M by taking

T (o) = wi(q)*(1 + P¥la— a/q|)™°

when oo € M(q,a) € M. Also, write t = [5k]. Then for any subset A of [1, P)NZ,
one has for each € > 0 the estimate

| x| 3 efast

zeA

2t
do < Q°P¥k,

Proof. We begin by observing that

/zm T(a))z e(ax®)

rzeA

2t
‘ do

Q/P* q 2t
<3 wle? [ @ PSS et 3+ afa)| ds
1<q<Q —Q/P* a=1 zc A (54)
By orthogonality,
q
SIS ek @ +a/a)| =a D eBvx). (5.5)
a=1 z€ A xe A%t
ql(x)
where we write \
Y(x) = (ah;_, — ;) (5.6)
i=1
But plainly,
S oelBuxN< Y 1Pt +1)%p(g), (5.7)
X€A2t 1<x1,...,x2t<P
qli(x) qly(x)

where p(q) denotes the number of solutions of the congruence

t

Z(wgi—l - xlgz) =0 (mod g),

=1
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with 1<z;<q (1<i<2t). By orthogonality, moreover, it follows from (5.6) that

q

qp(q)=i|sk<q,a>|2t=Z<q,a>2t\5k( I

(¢,a)" (g,a)

a=1
whence by (5.2),
q
ap(q) < > wi(q/(g, ) = > rwp(r)®.
a=1 rlq

Consequently, on inserting this estimate into (5.7) and substituting into (5.4) and
(5.5), we deduce that

Lr@[E ctosh[ da < P S wiarow. 6
m zeA 1<q<@Q
where
a(q) =) rw(r)*. (5.9)
rlg

The function wyg(r) is multiplicative with respect to r, and thus o(q) is likewise
a multiplicative function of ¢. Further, it follows from (5.9) that for each prime p
and natural number h, one has

whence by the definition of w(q),

k
w1 . _
U(ph) =14+ Z puk—i—l(kp U 2)215 + Z Z pu(k 2t)+wv 2t
uk+1<h v=2uk+v<h
Thus, on recalling that ¢t = [k/2], we deduce that

o(p)<1+ k*p~t,

and for h>2 we obtain

k
O'(ph) < p%(k:—Qt)—i—l—t +th;v(k_2t)+v—2t

v=2

< pUF =204t R (k-20) o ph/k
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We therefore arrive at the estimates

wi(p)?o(p) <k p~*,

wi (P20 (pUHY) < pTU T E (1),

The multiplicative properties of o(q) and wg(q) consequently assure us that for a
suitable constant A depending at most on k,

S w@Po@< [T (1+ 3 w"2o "))
h=1

1<¢<@Q P<Q
< H (14 Ap™!) < @°.
p<Q
The conclusion of the lemma now follows immediately from (5.8).

We record an immediate corollary of Lemma 5.4 in the form of the following
lemma.

Lemma 5.5. Suppose that k>4, 1<j<k — 3 and u}[%k] Suppose also that
Qj>(prg‘)wj(k—j)_
Then .
/O IFj(0)g;(0)2 £ (0)2" dor < PY+ M H; Q242 M,

where
M = (PM{7)™9 Q5+ + 1.

Proof. Following the argument of the proof of Lemma 3.1 of [16] (see, in particular,
equations (3.1), (3.7) and (3.8) of that paper), we obtain

1
u ETT AT u+2— Wi\ —w; NAu
/ I (0)g; ()2 f5(0)2" | dor << P HDLQ2 2 (PMTY )~ Q™ 41, (5.10)
0

where

I= / F(0)]g5(0)? £ ()] dov (5.11)

J
We note here that our choice of w; when j = k—3 ensures that the above conclusion
remains valid also when j = k£ — 3. Since by hypothesis we have

(p]w;”j)wj'(k—j)<Qj7
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it follows from Lemma 5.3 that for & € M; (g, a) C N;, one has
gi(a) < Q; wi(¢)(1 + Qfla —a/q|) .
Then on making use of a trivial estimate for F;(a), we deduce from (5.11) that

I < PGS | T5(a)1f(0)Pdo (5.12)

where T;(«) is the function defined for a € 91; by taking

T;(e) = wi(q)*(1+ Qfla —a/q|) 2,

when o € M;(q,a) C ;. But the hypotheses of the statement of Lemma 5.4 are
satisfied for Y;() on 9;, whence for u>[5k] we find that

[ ti@lePrie < @zt (5.13)
N;

Thus we conclude from (5.12) and (5.13) that
] < P1+E‘]/—\ZjﬁjQ?u+2—k’

and hence the desired conclusion is immediate from (5.10).

We supplement Lemma 5.5 with a variant of Lemmata 3.1 and 3.2 of [16] which
is of interest when

(PM)3wik=D) < Q; < (PM; Wi (k=) (5.14)
Lemma 5.6. Suppose that k>4 and 1<j<k—3, and suppose also that the condition
(5.14) holds. Let u be a positive integer, and define t and 0 as in the statement

of Lemma 5.2. Suppose further that A;_1 and A; are admissible exponents, and
define p,, also as in the statement of Lemma 5.2. Define next

4 —1
’7:1___—7 U= _Ea UJ:[’Y U+1],

and

Suppose that A1 and A, are admissible exponents, and write
pu =70 Ap_1+ (1 —0)A,).

Then one has

1
/0 |Fj()g; () f;()*"|da < P H; M;Q3 27 F M,
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where A
Wi\—w; u w j —7)w; w—2 u
M = (PM7)™ Q5+ 4 (PM7)F=ws Qltu=2 4 P,

Proof. Following the argument of the proof of Lemma 3.1 of [16] (see, in particular,
equations (3.1), (3.7), (3.8), (3.9) and (3.13)), we find that

1
/ |FJ (a)gj(a)ij (Oé)2u|d0é < P1+EHijQ§u+2_kM/ + Jl, (515)
0
where '
M = (PMT7)=wi Q5 4 (PM7)k=ws Qb2 (5.16
1 j 1 J
and
I = / Fr()gt ()25 (0)[2*do (5.17)

J

Here we note that our definition of g7 (a) differs from that of [16], the substitution
of the present definition being permitted through the use of Lemma 5.3.
We estimate the mean value J; via Holder’s inequality, deducing from (5.17)
that y
Jy < JY/ EIHD 27K (J4'J51—9') , (5.18)

where
Jy = / Fr(a)**da, J3= / g5 ()" f;(a)[*da,
Rl Rl
1 1
si= [ p@Pe e, g = [ 1@ da.
0 0
But since A,,_1 and A,, are admissible exponents, one has
J, < Q?w—Q—k—FAwfl—i—E and Js < Q?w—k—i—Aw—i—a. (519)
Also, it is a consequence of Lemma 4.10 of [18] that
Jo < PE(PH;M;)"7H1Q7*. (5.20)

In order to estimate J3 we first note that by (5.1), whenever a € M;(q,a) C Ny,
one has

g3 ()" = wr()* Q5T (1 + Qo — a/q) ™"
< Q4 (g + QHlga —al) .

When h is an integer, write v, for the number of solutions of the equation

ko o k_ o k_ _k
x| + 5 —x3 — Ty = h,
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with z; € A(Q;, R) (1<i<4). Then plainly,
fi(@)t =Y tne(ah),

|hl<2Qk

and thus it is a consequence of Lemma 2 of Briidern [3] that

| s@tipelda < @5 | (PME) g0+ Y junl | (520

n; h#£0

But by Hua’s Lemma (see, for example, Lemma 2.5 of Vaughan [15]), together with
an elementary counting argument,

Yo < Q7T and Y |un| < Qj.

hez
Then on recalling that our hypotheses imply that
Q; > (PM[7)zwi(k=i)
we conclude from (5.21) that
Jy = / g3 (0)* 5 (e)da < Q<. (5.22)
On combining (5.18)-(5.20) and (5.22), we arrive at the estimate

and so the conclusion of the lemma is immediate from (5.15) and (5.16).

Our next task is to assemble the estimates described above into a tool sufficiently
simple to apply that it is viable to employ computationally. Our aim is to establish
either that

1
/ [Fy(0) 5(0) 2+ da < PYEHMGQP 7R (M) ™ QR +1), (5.23)
0
or else that

1
/ [Fy(0)g ()2 (@) dar < P2 H;M;Q3 27 (PM{?) ™ Q2 +1).
0
(5.24)
Thus we seek to show that the mean values on the left hand sides of (5.23) and

(5.24) are bounded above by the estimate for the minor arc contribution stemming
from our methods, together with the “expected” major arc contribution. In order
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to ease our discussion, we list a number of conditions concerning the quantities pi,,,
pu and A, defined in the statements of Lemmata 5.2, 5.5 and 5.6.

wi(1+@;jd;)<(Augr — put1) (L — g1 — - — @), (A1)

1 <0, (A2)

uz[zk] and  wj(k = j)(1+w;d1)<1 = ¢1 — - = &5, (B)
swi(k — )1 +w@ip1)<1— ¢y — -+ — ¢;<w;(k — j)(1 + @;1), (C1)
wi(1+@;d1)<(Autr — pu)(1 = ¢1 — - — @), (C2)

wi(k —j+ D1+ @;0;)<2+ Aus1 — pa) (1 — @1 — -+ — @), (Cs)
wi(k — ) (1 +@id1)<(2 — pu)(1 — 1 — - — 5), (C4)
Pu<0, (C5)

Aypr(I =1 = = ¢5) > w;(1+w@;¢1), (D1)
Aupr(l = g1 — - — ¢5)<w; (1 + @;¢1). (D2)

We now summarise the conclusions of Lemmata 5.2, 5.5 and 5.6.

Lemma 5.7. Let k>4 and 1<j<k — 3.
(I) Suppose that condition (D1) holds, and further that one of the conditions (B),
or each of (Cy), (C2), (C3) holds. Then one has

1
/ [Py (@) g5 ()2 f () |do < P HMQP 2R (PM) s Q5.
0
(I") Suppose that the condition (A1) holds. Then one has
1
U EIT AT u+2— Wi\ —w; NAu
| 1@ @) e < PRI QR (M) g

(II) Suppose that condition (D3) holds, and further that one of the conditions (B),
or each of (C1), (Cy) and (Cs) holds. Then one has

1
/0 |E;(a)gi(a)?fi(a)*|da < P1+€HijQj2u+27k.

(II") Suppose that condition (D) holds, and further that condition (As) holds. Then
one has

1
/ |Fj(a)fj(a)2“+2!da < P”EHJ.MJ.Q?quz—k.
0

Proof. The assertions of each case of the lemma are immediate, save that in part
(I") we have made the observation that the validity of condition (A4;) automatically
implies that of (Dy).
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Since for each i one has 0<¢;<1/k, one deduces readily that the condition (B)
is satisfied automatically whenever

u>[1k] and 2" F(k + ;)<L

In particular, therefore, the condition (B) is satisfied when u>[5k] and

j<k—4 and k<7, (5.25)
or

j<k—5 and k<15, (5.26)
or

j<k—6 and k<3l (5.27)

We finish this section by indicating how to obtain new permissible exponents via
the iterative schemes (M;) and (Mz). We suppose in what follows that A, (r € N)
are known permissible exponents, and we seek a new permissible exponent ..

(i) Process M;. Consider first the iterative scheme (M3) above. Suppose that the
conditions of Lemma 5.7(I) hold with u = s — j — 1. Then following the argument
of §2 of [18] (see also §§11, 13), we find from Lemma 5.7(I) that A, and ¢ are
determined by the relations

PH; 1 M;Q;"~ ~ PH;M; Q" (PM;™) ™", (5.28)

and the equations (4.2)-(4.4). Define &; as in (4.5) for 1<i < j, and define «; as in
(4.6) for (2<i<j). Also, define «;, B;, i, 9; for 1<i<j by

Q= ]{7_1, ﬁj = 0, Vi = 1-— wyj, (Sj = w;wy, (529)
and for i = j —1,...,2 successively by

0i =& + Kit10i+10i+1,
Vi =14+E& + Kit1Qi+17Yi+1,

5.30
Bi = & + Kix104118i41, (5.30)
a; = (2k + 6;) 71,
and finally,
01 = &1 + Kaaada,
v1 =1+ & + reaye,
(5.31)

61 = 07
a1 = (2kﬁ+51)_1

Then we find that ¢ and X\, satisfy

¢i = ai(vi — Bi(p2 + -+ i) — i) (2<i<y), (5.32)
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1 =a1m (5.33)

and
A= Xe_1(1— 1) + 1+ (25 — 2)9y. (5.34)

Thus, in a manner similar to that alluded to in §4, we are able to establish new
permissible exponents by iterating this and allied procedures.

Suppose next that the conditions of Lemma 5.7(II) hold with v = s —j — 1.
Then again following the argument of §2 of [18], we now find from Lemma 5.7(II)
that A and ¢ are determined by the relations

PH; M;Q;" ~ PH;M;Q7* 57", (5.35)

and the equations (4.2)-(4.4). Define &; as in (4.5) for 1<i < j, and define k; as in
(4.6) for (2<i<j). Also, define «;, B;, v; for 1<i<j by
Lo Bi=k;j—k, =14k —k, (5.36)

and for i = j—1,...,1, successively by means of (4.7). Then we find that ¢ and X,
satisfy (4.8)-(4.10), and again we are able to establish new permissible exponents
by iterating this and related procedures.

(ii) Process N:. Next consider the iterative scheme (M) above. Suppose that
the conditions of Lemma 5.7(I’) hold with v = s — j — 1. Then we find that X,
and ¢ are determined by (5.28)-(5.34). Meanwhile, when the conditions of Lemma
5.7(I1") hold with u = s — j — 1, one finds instead that X, and ¢ are determined
by (5.35), (5.36) and (4.7)-(4.10). In either case we are able to establish new
permissible exponents by iterating these and similar procedures.

6. WARING’S PROBLEM

We defer announcing the permissible exponents obtained through our methods to
869 to 22, but pause here to indicate how Theorem 1.1 may be established by means
of the latter exponents. We require the following theorem, which is essentially a
consequence of Corollary 1 to Theorem 4.2 of Wooley [22] and Theorem 5.1 of [22].

Theorem 6.1. Let s, t and w be natural numbers satisfying 2s=k+1, and suppose
that A,, (n = s,t,w) are admissible exponents. Define

k— Ay — AgAy,
o(k) = 2(s(k+ Ay — Ay) +tw(1 + Ay)) 6.1)

and

M) = s(k — A¢) + twAg
sk Ay — Ay) Ftw(l+ A

(6.2)

Suppose that
1 <Ak) <1—o0(k). (6.3)
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Then for each natural number v with v=k, and each admissible exponent A,, we
have

G (k)< max {2?1 +1+ LA(;)} ,4k} : (6.4)

We note that some minor modifications to the argument of the proof of Theorem
5.1 of [22] will be required in order to account for the use of the inequality (2.12)
in place of the mean value

1
/ Fo(0)2fo()2|da < PA++1+e.
0

However, the replacement of the generating functions fo(«) in the latter by f; (a)
in the former causes no technical problems, and affects only the singular integral
in the asymptotic formula resulting from the application of the Hardy-Littlewood
method. This singular integral, moreover, is easily bounded below by the expected
quantity using only the methods of Chapter 2 of Vaughan [15], and so the desired
conclusion follows with little difficulty.

In order to establish Theorem 1.1, one merely optimises the choice of o(k)
through appropriate choices of s, t, w, and then one optimises the upper bound
(6.4) for G(k) through a suitable choice of v.

7. DISTRIBUTION OF an® mopuLo 1

We turn our attention now to the proofs of Theorems 1.2 and 1.3. Note first
that the discussion of §6 of Wooley [22] leading to the proof of Theorem 1.2 of [22]
establishes the following theorem.

Theorem 7.1. Let k>4, and suppose that o(k) and \(k) are defined as in (6.1)
and (6.2), and satisfy (6.3). Let « € R and € > 0. Then there is a real number
N (e, k) with the property that whenever N>N (e, k), one has

min_||an®||<NETo®),

1<n<g

Thus the work expended in establishing Theorem 1.1 already yields the conclu-
sion of Theorem 1.2.

The proof of Theorem 1.3 is a little more involved, though in principle this follows
the argument of the proof of Theorem 1.1 of Wooley [20] in essentially all details.

Theorem 7.2. Let k be a natural number with T<k<20, and let « € R and € > 0.
Suppose that s is a natural number with 1<s<k, and that As is an admissible
exponent derived through the methods described in §§89-22. Define

k—2A,

T(k):: zgéf:jr.

Then there are infinitely many natural numbers n satisfying ||an®||<ns= 7).
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Of course, the exponent claimed in the statement of Theorem 7.2 is valid in far
greater generality, but our proof is much simplified by restricting to the methods
of this paper. When P and H are large real numbers, denote by Ug(P, H, R) the
number of solutions of the diophantine equation

haah 4+ heat = giyf + - + goy¥ (7.1)

with
1<h;, g;<H and z;,y; € A(P,R) (1<i<s).

In order to prove Theorem 7.2, we follow the argument of the proof of Lemma
4.2 of [20], together with the argument of the proof of Theorem 1.1 of that paper
(described at the end of §4 of [20]). Thus we find that the conclusion of Theorem
7.2 will follow provided only that we establish that when s is a natural number
with 1<s<k, and A is a permissible exponent, then

Us(P,H,R) < H?*~1TepAste (7.2)

A program for establishing such bounds is described in §3 of [20], but in light of
subsequent developments we feel obliged to outline some of the necessary steps so
far as the application at hand is concerned. Since a full account of such a proof
would be costly in terms of space, we will be economical in the details by referring
frequently to earlier work.

When 1<j<k, we write

fil)= > filge) and Fi(a)= Y Fj(ga),

1<g<H 1<g<H

and we note that by orthogonality, one has

1
U.(P,H,R) = / o(a) 2 dor
0

We will refer to an exponent Ay as derived whenever the inequality (7.2) holds. Our
aim is to show, at least when 1<s<k, that the exponent )\, is derived whenever
As is also a permissible exponent stemming from the methods described herein. In
this context, we note that Ay = 2s — 1 is always a derived exponent. For suppose
that g, h,x,y is any solution of the equation (7.1) counted by Us(P, H, R). For
each fixed choice of h;, z; (2<i<s) and g;,y; (1<j<s), an elementary estimate for
the divisor function shows that there are at most O((H P)¢) possible choices for h;
and x1, whence
Us(P,H,R) < (HP)?*~1te,

Observe next that as a consequence of Lemma 3.4 of [20], and the argument of
the proof of Lemma 3.1 of Wooley [19] (see, in particular, equation (3.7)), one has
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for 0<j<k — 1,

/ 135(0)%F; ()| dor
0

e rrl4+e 11 A1 25—1
< PEHYW H; M; M%)

o 1
< (HPH MU (@ BB + [ [5531(0)f51(0)|da).
0

Thus, whenever (\g) is an existing sequence of derived exponents, one obtains the
following analogues of Lemmata 2.1 and 2.2 above by essentially identical argu-
ments.

Lemma 7.3. We have

/ Bo(0)fo ()2 |da
0

1
< (HPPMET (H#HPMQY + H [ [51(0)f (0)]da)
0

Lemma 7.4. Whenever 0 <t < 2s and 1<j<k — 1, we have
1 o~ —~
/O 185 (@) () |da < (HP)*(H* ' Q)2 (HH; M; M 57> ' Tj4) "2,
where

1
_ s .
Tjt1 = PH; M, H¥ Q7% +/ 1§ j+1()fjs1 ()2 da.
0

The reader may wish to compare Lemma 7.4 with Lemma 3.5 of [20], which
considers the special case with s = ¢.

Now observe from the tables in §§9-22 that for 7<k<20 and 1<s<k, the iterative
procedures described herein always terminate with processes of type A;f’l or B;f (I =
1,2). A modicum of contemplation within the discussion of §4 above therefore leads
one to the conclusion that the claimed bound (7.2) will follow, for any permissible
exponent \g produced by the methods of this paper for 1<s<k, so long as we are
able to establish the estimates contained in the following lemmata.

Lemma 7.5. With the hypotheses of the statement of Theorem 3.4 for 1<I<k —2,
subject to (Ia) or (Ib), one has

1
/ fgj(a)’yda < H21_1+€p21—l+e]\7j2l—1ﬁjzt17
0
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subject to (Ic), one has
/01 |3j(a)|2lda < Hzl_1+5P21—z+a]\“4“jzl—1+oﬁjzl—17
subject to (II), one has
/1 |8‘Vj(a)|2lda < HQI’”EPQI’Z’%*E]\Z?Iﬁfl_l,
0
and subject to (I11), one has
/ 1 1§5()[? da < HY ~1Hep2tre 2 g2 o1,
0
Lemma 7.6. Suppose that 2<I<k — 2. Then one has

1
[ﬂmxwﬁm<ﬂfH@fWMﬁﬂif

In order to establish Lemmata 7.5 and 7.6, we note that in the diophantine
equations underlying the mean values

1
/mmwm,
0

the equations differ from those underlying Rg.s) (P; ¢), defined in (3.1), only in so far
as an additional linear variable in the interval [1, H] occurs as a coefficient of each
polynomial W;. Consequently, on following the argument of the proof of Lemma
3.1 above, we find that

1 L 1
Amm%”m<ﬂ4wmwﬂﬂmme

~ 1 1/2
+P2l_l_1(HHij)21_l<S//o |3j(04)|21+1d0‘> ’

where S’ denotes the number of solutions of the equation
h¥;(z hymiu) = g¥;(w; g n; v),

with the polynomials ¥;; as in the proof of Lemma 3.1, and with the variables
in the same ranges, save that 1<g, h<H. Then by a divisor estimate argument
paralleling the start of the proof of Lemma 3.2 of [18], we find that

1 1
Amw%“m«ﬂlmmwﬁémme

I+1 o7 ~ ~ i+l _ .
+P* " TAT2(HH;M;)? T TPH'Y REB;(P;(%O)-

On considering the underlying diophantine equations, the bounds claimed in Lem-
mata 7.5 and 7.6 now follow by an inductive argument similar to that employed in
the proofs of Theorems 3.4 and 3.5.

This completes the proof of Theorem 7.2.
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8. PRELIMINARY DISCUSSION OF COMPUTATIONS

By employing a computer to optimise the use of the methods described in §§2—
5 of this paper, one derives an upper bound for a sequence (As) of permissible
exponents. In the tables presented in §§9-22, we record for each value of k the per-
missible exponents thus derived, together with the process yielding these exponents
towards the end of the iteration process. Naturally, the conditions necessary for the
application of the latter process may not initially hold. Under such circumstances,
we begin by applying simpler, more robust, versions of such processes. Thus, for
example, case (III) of Theorem 3.4 implies that processes A and B may always be
applied with 7 = 1. In order to give some indication of the parameters ¢ arising in
these iterative processes, we record also the values of ¢1, ¢;, > 7_, ¢; (when j > 1),
and when j>3 we record also the value of

I

¢s = 3%%(@'—1 ¢i +k(¢r-1+ ¢z)),
corresponding to each process involving j differencing operations. Adjacent to the
table, we discuss any issues pertaining to the applicability of iterative processes
in the light of the conditions associated with the use of Theorems 3.4, 3.5 and
Lemma 5.7. In particular, we note that the paramter x;; is zero throughout unless
otherwise indicated. Recorded values for A\; and ¢ are upper bounds, computations
having been performed in double precision arithmetic.

Following the primary table, we record also the values of o(k), 7(k) and G(k)
(for £>9) stemming from Theorems 6.1 and 7.2, the values of the former quantities
recorded being lower bounds. We provide a parenthetic indication of the relevant
parameters employed in the derivation of these values.

Note that the method of the proof of Theorem 5.1 of Wooley [22] shows that
whenever A, is an admissible exponent, then for

S B
VT ety T

one has .
/ \fg(a)lzsda < st_k,
0

whence Ay = 2s — k is a permissible exponent.

A final word is in order concerning the application of the processes M7 and N7.
When calculating a permissible exponent A; by means of Lemma 5.7, one frequently
encounters conditions involving admissible exponents A, with u substantially larger
than s. Thus it is useful to prepare preliminary estimates by applying process
M throughout, where j is sufficiently small that the condition (B) in the simple
variants (5.25)-(5.27) is applicable. Since the conditions (D7) and (Ds) are easy to
check computationally, one obtains in this manner reasonably strong permissible
exponents Ay with s exceeding some suitable natural number sy. Equipped with
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these preliminary bounds, we may subsequently refine the iterative procedures so
as to attain the exponents claimed in the primary tables. Comments clarifying this
process are included in each section.

We conclude by discussing a final simple process not without interest.

Process D®. Suppose that s>k and ¢ is a natural number. Then whenever )\ is
a permissible exponent, then also the exponent |, is permissible, where

Noyr = max{As + 2t(1 — o(k)),2s + 2t — k},
and here o(k) is the exponent arising in the statement of Theorem 6.1. In order to

establish this claim, we adapt the argument of the proof of Theorem 5.1 of Wooley
[22]. Write

fla) = Z e(az®) and g(a)= Z e(azh).

z€A(P,R) 1gzP
Let m denote the set of real numbers a € [0,1) with the property that, whenever

a€Z,q€N, (a,q) =1and |ga — a|<P'~*, one has ¢ > P. Then as in the proof
of Theorem 5.1 of [22], one has

[t s+ =2aa < (sup @)™ [ ot sl
< (Pl—a(k)—i—s)QtP)\S—&—&.

On the other hand, provided that s>k, one may apply a standard pruning argument,
of the type described in §5 of Vaughan [13], to show that

/ |g 28+2t 2|da<<P23+2t k:

By considering the underlying diophantine equations, the claimed conclusion follows
on noting that

1 1
| 1@ da < [ lg(a)? a2 da
0 0

As a consequence of the process D®, we may restrict attention to those s for
which the processes A, B, N or M demonstrate that the permissible exponent A
satisfies

As < As—1+2(1 —o(k)),

for all permissible exponents A;_1.
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9. PERMISSIBLE EXPONENTS FOR SEVENTH POWERS

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents A4 listed in the table for
3<s<12 are identical with those on p.237 of [18], and indeed for s = 3,4, these
exponents were established earlier by Vaughan [14]. We remark that in this range
of s, one may take 7;; = 0 (I = 1,2) throughout (see [18] for details). Our compu-
tations for s>13 depend on first obtaining preliminary estimates by applying the
process M5 throughout (noting (5.25) and checking (D;) or (D2)). In this way we
obtain the preliminary permissible exponents

Az = 19211, Ay = 21127, A5 = 23.073, Mg = 25.019,

and Ay = 2s — 7 for s>17. Equipped with these preliminary bounds, we refine our
procedure as indicated in the table. One may computationally check the validity
of the appropriate case of Lemma 5.7 as follows.

(a) s = 13,14. With process M3, one finds that Lemma 5.7(I) holds with u =
s — 5 by virtue of conditions (D7), (Cy), (Cs2), (C3).

(b) s = 15. With process M4®, one finds that Lemma 5.7(I) holds with u = 11
by virtue of conditions (D), (B).

(c) s = 16. With process M,°, one finds that Lemma 5.7(I) holds with u = 13
by virtue of conditions (D), (B).

(d) s>17. One finds that process D* applies.
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Table of permissible exponents for k =7

s Process s 01 o} Zzl O Oy
3 By, 3.0639191 0.03195955

4 AP 4.2641175 0.06818557

5 By: 5.5891167 0.08699398 0.0355 0.1225

6 A° 7.0143820 0.09641272 0.0694 0.1658

7 B 8.5410894 0.10564538 0.0406 0.2343 1.1347
8 A3®  10.1526323 0.11202654 0.0691 0.2800 1.4554
9 By  11.8469485 0.11873997 0.0416 0.3577 1.6983
10 A% 13.6055676 0.12329153 0.0661 0.4030 1.8315
11 A}"? 15.4242973 0.12803790 0.0859 0.4429 1.9600
12 A% 17.2932208 0.13214156 0.1027 0.4781 2.0785
13 M 19.1925374 0.13409068 0.1072 0.4919 2.1387
14 MM 21.1139297 0.13535033 0.1072 0.4957 2.1606
15 M5 23.0528848 0.13635572 0.1226 0.3903 2.1673
16 M3i®  25.0105382 0.13784908 0.1327 0.2706

s>17 D* 25 — 7

o(7) = 0.017475

7(7) = 0.020777

(s =6).

(s=14,t =5, w=28),

10. PERMISSIBLE EXPONENTS FOR EIGHTH POWERS

41

Following the computational procedure outlined in §8, we obtain the permissible

exponents recorded in the table below. The exponents A, listed in the table improve
on those provided by [16, 18] for 3<s<20. Broadly speaking one can follow the
discussion of [18] for 3<s<14, though the improvements contained in Theorem 3.4
lead to sharper estimates, and permit a slightly more powerful iterative process.
In particular, one may take 7;; = 0 (I = 1,2) for 3<s<12, and 752 = 0.002 for
s = 13,14 (see §11 of [18] for details). Our computations for s>15 depend on first
obtaining preliminary estimates by applying the process M3 for 16<s<20, and M3
for s>21 (noting (5.26) and checking (D;) or (D3)). In this way we obtain the
preliminary permissible exponents

A5 = 22.282, A = 24.206,

A7 = 26.143, A5 = 28.098,

A9 = 30.061, Ay = 32.031, Ag; = 34.010,

and Ay = 2s — 8 for s>22. Equipped with these preliminary bounds, we refine our
procedure as indicated in the table. One may computationally check the validity
of the appropriate case of Lemma 5.7 as follows.
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(a) 15<s<17. With process M¢, one finds that Lemma 5.7(I) holds with u = s—6

R. C. VAUGHAN AND T. D. WOOLEY

by virtue of conditions (D), (C1), (C2), (Cs).

(b) s = 18,19. With process M}, one finds that Lemma 5.7(I) holds with v =

s — 5 by virtue of conditions (Dy), (Cy), (C2), (Cs).

(c) s220. One finds that process D*® applies.

Table of permissible exponents for k = 8

s Process s 01 o} Zzl O Oy
3 B} 3.0469787 0.02348931
4 AP 4.2164889 0.05740233
5 Byg 5.4915710 0.07270549 0.0222 0.0949
6 A° 6.8566563 0.08097841 0.0563 0.1373
7 Bi7 8.3105992 0.08825831 0.0264 0.1881 0.9864
8§ A3 9.8428621 0.09355343 0.0559 0.2322 1.3410
9 AY®  11.4529104 0.09907986 0.0750 0.2646 1.5885
10 A% 13.1283069 0.10315980 0.0550 0.3379 1.7214
11 AJM® 14.8664781 0.10742204 0.0741 0.3750 1.8485
12 A 16.6561197 0.11069450 0.0528 0.4510 1.9401
13 A% 184901012 0.11356143 0.0686 0.4849 2.0172
14 A% 20.3623532 0.11614698 0.0820 0.5156 2.0883
15 M5 22.2661078 0.11832893 0.0938 0.5428 2.1728
16 MIS 241891161 0.11934590 0.0938 0.5484 2.2022
17 M7 26.1294925 0.12039309 0.0938 0.5527 2.2249
18 M}®  28.0833353 0.12119204 0.1075 0.4620 2.2385
19 M} 30.0473193 0.12176644 0.1075 0.4638 2.2447
20 D2 32.0186056
s=21 DS 25 — 8

o(8) = 0.014356 (s =16, t = 6, w = 10),

7(8) = 0.017327 (s ="1).

11. PERMISSIBLE EXPONENTS FOR NINTH POWERS

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents A listed in the table improve
those provided by [18] for 5<s<25. For s = 3,4, the exponents recorded in the table
were established earlier by Vaughan [14]. Broadly speaking, we may again follow
the discussion of [18] for 5<s<17, though the improvements contained in Theorem
3.4 lead to sharper estimates, and permit slightly more powerful processes. We note
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in particular that when £>9 and 1<j<3, then in view of the inequality 0<¢;<1/k
(1<i<j), one has
¢1+ -+ d;<ELE (11.1)

Thus, for 1<j<3, the condition (§) of Theorem 3.4 is automatically satisfied. Com-
bining the latter observation with the methods of [18], it follows that one may take
70 =0 (I =1,2) for 3<s<11 (in which interval our methods make use of a choice
of j with 1<j<4). When j = 5 and 6, it follows from Theorem 3.4(Ib) case (iii)
that one may take 7;; =0 (I = 1,2) provided only that

I
3" ¢+ 9(bro1 + 61)<2,

=1

when I = 3,4,5. The computational verification of this inequality leads to the
conclusion that one may take 7;; = 0 (I = 1,2) also for 12<s<{14. Finally, when
j = 6 and 15<s<17, it follows as in §11 of [18] that one may take 7;; = 0.002565
(I =1,2) whenever ¢;<0.107131.

As in the previous cases, our computations for s>18 depend on first obtaining
preliminary estimates by applying the process M} for 18<s<23 (noting (5.26) and
checking (D;) or (Ds)), and D?® for s>24. In this way we obtain the preliminary
permissible exponents

A1g = 27.260, A9 =29.199, Ayp = 31.150,

A21 = 33.120, A9 = 35.080, Aa3 = 37.055,

and by virtue of the preliminary exponent
0(9) =0.01212 (s=19,t =6, w=12),
we have also
As = max{2s — 9, 37.055 + 2(s — 23)(1 — 0.01212)}

for s > 23. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) s = 18,19. With process Mg, one finds that Lemma 5.7(I) holds with u =
s — 7, by virtue of conditions (D), (Cy), (Ca2), (Cs).

(b) 20<s<22. With process M¢Z, one finds that Lemma 5.7(I) holds with u =
s — 6, by virtue of conditions (D), (C1), (C3), (Cs).

(c) s=23. One finds that process D*® applies.
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Table of permissible exponents for k =9

s Process s 1 oy Zzl b P
3 B 3.0358052 0.01790259
4 AP 4.1822894 0.04941786
5 Byg 5.4197057 0.06218814 0.0116 0.0737
6 By  6.7383084 0.06955946 0.0463 0.1158
7 AL 8.1356346 0.07551302 0.0626 0.1381
8 B;y? 9.6039271 0.07985390 0.0450 0.1956 1.2367
9 A% 11.1425026 0.08420410 0.0620 0.2231 1.4729
10 A% 12.7463430 0.08805551 0.0451 0.2870 1.6267
11 A}"? 14.4105835 0.09157319 0.0625 0.3194 1.7451
12 A% 16.1292111 0.09468812 0.0451 0.3870 1.8387
13 A 17.8959526 0.09741610 0.0607 0.4194 1.9155
14 Bgii  19.7055987 0.09990639 0.0420 0.4882 1.9858
15 A 21.5507274 0.10189148 0.0553 0.5185 2.0414
16 A% 23.4269614 0.10370526 0.0673 0.5468 2.1092
17 AZP? 25.3292029 0.10524175 0.0775 0.5717 2.1717
18 M@ 27.2520471 0.10643130 0.0834 0.5885 2.2317
19 M 29.1901860 0.10724097 0.0834 0.5937 2.2558
20 M2°  31.1420569 0.10804665 0.0958 0.5163 2.2898
21 M2'  33.1033373 0.10852186 0.0958 0.5185 2.2962
22 M22  35.0727119 0.10895936 0.0958 0.5203 2.3010
§>23 D*
o(9) = 0.012183 (s =19,t =6, w = 12),
7(9) = 0.014871 (s =18), G(9)<50 (v=22)

12. PERMISSIBLE EXPONENTS FOR TENTH POWERS

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents A, listed in the table improve
on those previously available for s>3. Our strategy is similar to that described in
previous sections. Note first that for 3<s<11, the condition (§) of Theorem 3.4 is
satisfied. Since when j = 5,6, one of the conditions («) and () of Theorem 3.4 is
satisfied, and one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied for
3<s<15, we deduce that one may take 7;; =0 (I = 1,2) for 3<s<15.

In order to discuss permissible exponents for 16<s<20, we apply case (Ic) of
Theorem 3.4. In the notation of the latter theorem, we find from §22 that when
j=6or 7 and 8<j 4+ 1<9, one has J = 1, and hence one may take

03 = 0.0035377,

04 = 0.0372112, d¢ = 0.2457501,
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07 = 0.4042791 and Jg = 0.5946271
(note that §22 is independent of §§9-21). Thus we deduce that one may take

Te,l = %53 < 0.00118 whenever ¢;<0.097668 (I =2,3),
and that one may take
Try = L(63 +64) < 0.00583 whenever ¢1<0.095055 (I =2),
and otherwise, one may take
771 = 207 < 0.05776.

As in the previous cases, our computations for s>21 depend on first obtaining
preliminary estimates by applying the process M? for 21<s<26 (noting (5.26) and
checking (Dy) or (D3)), and D*® for s>27. In this way we obtain the preliminary
permissible exponents

Xot = 32.249, Agp = 34.198,  No3 = 36.156,

Aot = 38.122, Aoy = 40.094, Aogg = 42.072,

and by virtue of the preliminary exponent
o(10) =0.01054 (s=22,t=7, w=13),
we have also
As = max{2s — 10, 42.072 + 2(s — 26)(1 — 0.01054)}

for s > 26. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) s = 21,22. With process N7, one finds that Lemma 5.7(I’) holds with u =
s — 8, by virtue of condition (4;).

(b) 23<s<25. With process Mg, one finds that Lemma 5.7(I) holds with u =
s — 7, by virtue of conditions (D), (Cy), (C2), (Cs).

(c) s = 26. With process M, one finds that Lemma 5.7(II) holds with v = 19,
by virtue of conditions (Ds), (C1), (C4), (Cs).

(d) s>27. One finds that process D* applies.
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Table of permissible exponents for k = 10

s Process s 01 o} i;l O Oy
3 B 3.0281105 0.01405522

4 AP 4.1568114 0.04330611

5 By 5.3659530 0.05441877 0.0042 0.0586

6 Byg 6.6465971 0.06056135 0.0375 0.0981

7 A? 7.9967162 0.06540123 0.0525 0.1179

8 Bz 9.4143540 0.06956822 0.0361 0.1670 1.1412
9  AY®  10.8945712 0.07291878 0.0516 0.1912 1.3731
10 A% 124375675 0.07641992 0.0368 0.2472 1.5499
11 A% 14.0371956  0.07929039 0.0525 0.2751 1.6556
12 A»® 15.6914013 0.08215771 0.0377 0.3350 1.7513
13 A2 17.3943657 0.08460686 0.0524 0.3645 1.8239
14 Bgii  19.1426918 0.08695770 0.0366 0.4265 1.8937
15 A% 20.9303709 0.08892986 0.0502 0.4559 1.9503
16 DBgy; 227537459 0.09078376 0.0627 0.4843 2.0175
17 A? 246071999 0.09230268 0.0456 0.5472 2.0724
18 A®?  26.4867878 0.09364492 0.0558 0.5724 2.1251
19  AP?  28.3886784 0.09480400 0.0647 0.5951 2.1845
20 A2%?  30.3094873 0.09580462 0.0734 0.6171 2.2431
21 N2\ 32.2449884 0.09653784 0.0750 0.6258 2.2800
22 N22  34.1926960 0.09715085 0.0750 0.6306 2.3008
23 MZ2®  36.1509648 0.09770971 0.0863 0.5616 2.3354
24 MZ*  38.1169804 0.09808226 0.0863 0.5639 2.3420
25 M2 40.0895832 0.09841150 0.0863 0.5658 2.3469
26 MZ26  42.0677228 0.09869813 0.0867 0.5681 2.3577
s>27 D¢

o(10) = 0.010569 (s =22,t =17, w = 13),

7(10) = 0.013036 (s =19), G(10)<59 (v = 26).

13. PERMISSIBLE EXPONENTS FOR ELEVENTH POWERS

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents A, listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 3<s<13, the condition (§) of Theorem 3.4 is
satisfied. Since when j = 6,7, one of the conditions («), (8) and () of Theorem
3.4 is satisfied, and one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied
for 3<s<17, we deduce that one may take 7;; =0 (I = 1,2, 3) for 3<s<17.
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In order to discuss permissible exponents for 18<s<22, we apply case (Ic) of
Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
j="T7or 8 and [ =2, one has J = 1, and hence one may take

03 = 0.0025439, 44 = 0.0292912, ds = 0.5257736.
Thus we deduce that one may take
770 = (03 + 64) < 0.00455 whenever ¢1<0.087205 (I = 2),
and that one may take
gy = 304 < 0.00733  whenever ¢1<0.087205 (I = 2).

As in the previous cases, our computations for s>23 depend on first obtaining
preliminary estimates by applying the process Mg for 23<s<29 (noting (5.26) and
checking (D;) or (D2)), and D?® for s>30. In this way we obtain the preliminary
permissible exponents

Aos = 35.299, Aoy = 37.244, Aoz = 39.199, A9 = 41.161,

Ao7 = 43.130, Aog = 45.105, g9 = 47.084,

and by virtue of the preliminary exponent
o(11) =0.00930 (s=25,t="7, w=15),
we have also
As = max{2s — 11, 47.084 + 2(s — 29)(1 — 0.00930)}

for s > 29. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) s = 23,24. With process N§, one finds that Lemma 5.7(I’) holds with u =
s — 9, by virtue of condition (4;).

(b) 25<s<28. With process M3, one finds that Lemma 5.7(I) holds with u =
s — 8, by virtue of conditions (Dy), (C7), (C2), (Cs).

(c) s =29. With process N, one finds that Lemma 5.7(1") holds with u = s—7,
by virtue of condition (A;).

(d) s=30. One finds that process D® applies.
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Table of permissible exponents for k =11

s Process s b1 oF Zzl i O
3 B; 3.0221905 0.01109521

4 B2 4.1346363 0.03776126

5 AP 5.3216133 0.04837243

6 Byg 6.5727501 0.05368021 0.0312 0.0848

7 Al? 7.8855603 0.05763697 0.0449 0.1026

8 Bys  9.2614256 0.06147175 0.0287 0.1442 1.0534
9  AY®  10.6937742 0.06416025 0.0434 0.1662 1.2881
10 Byg® 121849727 0.06723014 0.0289 0.2140 1.4815
1AM 13.7292224  0.06964143  0.0441 0.2396 1.5798
12 Bg%g  15.3262982 0.07219102 0.0301 0.2917 1.6759
13 A% 16.9712740 0.07435992 0.0446 0.3191 1.7442
14 Bgii  18.6621448 0.07651920 0.0307 0.3745 1.8126
15 A 20.3940119 0.07837637 0.0441 0.4022 1.8679
16 DBgy; — 22.1640483 0.08016212 0.0566 0.4295 1.9304
17 AI™? 23.9674841 0.08168359 0.0422 0.4874 1.9847
18 A% 25.8009828 0.08307973 0.0533 0.5133 2.0398
19 A% 27.6607360 0.08429767 0.0378 0.5710 2.0979
20 A7 295431019 0.08534127 0.0466 0.5939 2.1448
21 AZ"? 31.4450976 0.08625844 0.0548 0.6151 2.1947
22 AZ*®  33.3638548 0.08704554 0.0617 0.6340 2.2473
23 N2 352968576 0.08772003 0.0682 0.6516 2.2983
24 NZ*  37.2413126 0.08824091 0.0682 0.6568 2.3214
25 M2 39.1958837 0.08872562 0.0786 0.5959 2.3658
26 M26  41.1582991 0.08907859 0.0786 0.5988 2.3733
27 M2 43.1274069 0.08938707 0.0786 0.6012 2.3800
28 M2 451020502 0.08964222 0.0786 0.6031 2.3893
29 NZ°  47.0818525 0.08990704 0.0848 0.5283 2.4164
s>30 D*

o(11) = 0.009322

(s=25,t="17, w=15),

7(11) = 0.011604 (s =10), G(11)<67 (v =29).

14. PERMISSIBLE EXPONENTS FOR, TWELFTH POWERS

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents A, listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 3<s<14, the condition (d) of Theorem 3.4 is
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satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied in
this range of s, we deduce that one may take 7;; =0 (I = 1,2) for 3<s<14. When
j = 6 and s = 15,16, meanwhile, we must resort to Theorem 3.4(II)(1). Here we
note that condition (iii) is satisfied, and thus the estimate (4.1) holds for j = 6 and
[ =2,3 with x,; = % and 7;; = 1. Next, when j = 7 and s = 17,18, we may apply
case (f3) of Theorem 3.4(Ib) in combination with the condition (iii) to deduce that
one may take 772 = 0.

In order to discuss permissible exponents for 19<s<25, we apply case (Ic) of
Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
7 =8or 9 and 10<j +I<11, one has J = 1, and hence one may take

d4 = 0.0234059, J5 = 0.0866022, dg = 0.4689321,

09 = 0.6501924, 619 = 0.8586937.
Thus we deduce that one may take
T8, = i54 < 0.00586 whenever ¢1<0.080502 (I =2,3),
and that one may take
Toy = +(04 + 05) < 0.01223  whenever ¢1<0.078831 (I = 2),
and otherwise, one may take
Toy = §09 < 0.07225 (I =2).

As in the previous cases, our computations for s>26 depend on first obtaining
preliminary estimates by applying the process M? for 26<s<33 (noting (5.26) and
checking (Dy) or (D3)), and D*® for s>34. In this way we obtain the preliminary
permissible exponents

Ao = 40.290, Aoy =42.241, Agog = 44.200, Ag9 = 46.166,

Aso = 48.138, Az = 50.114, Ago = 52.094, N33 = 54.077,

and by virtue of the preliminary exponent
0(12) =0.00834 (s=28,t=8, w=17),
we have also
As = max{2s — 12, 54.077 4+ 2(s — 33)(1 — 0.00834)}
for s > 33. Equipped with these preliminary bounds, we refine our procedure as in-

dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.
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(a) s = 26,27. With process N, one finds that Lemma 5.7(I’) holds with u =
s — 10, by virtue of condition (A;).

(b) 28<s<32. With process Mg, one finds that Lemma 5.7(I) holds with u =
s — 9, by virtue of conditions (D), (Cy), (C2), (Cs).

(c) s=33. One finds that process D*® applies.

Table of permissible exponents for k = 12

s Process s 01 oy Zzl ¢ P

3 B; 3.0173811 0.00869053

4 Bz 4.1139674 0.03238304

5 A 5.2806367 0.04288933

6 By3 6.5078011 0.04813455 0.0252 0.0733

7 AD? 7.7910496 0.05157287 0.0392 0.0907

8 Bys 9.1322748 0.05495699 0.0221 0.1252 0.9671
9 AY®  10.5253191 0.05723065 0.0371 0.1466 1.2185
10 B,y*  11.9729266 0.05988316 0.0222 0.1871 1.4243
11 A}"? 13.4700805 0.06193465 0.0373 0.2112 1.5174
12 Bg%s 150174771 0.06417372 0.0238 0.2566 1.6127
13 A% 16.6110110 0.06607653 0.0378 0.2819 1.6761
14 AM? 0 18.2496682 0.06802194 0.0503 0.3060 1.7421
15 A 19.9296021 0.06973444 0.0387 0.3580 1.7957
16 DBgy;  21.6486622 0.07140335 0.0515 0.3844 1.8541
17 A™? 234028589 0.07285983 0.0378 0.4355 1.9056
18 A®?  25.1895563 0.07423677 0.0490 0.4606 1.9583
19 A% 27.0053277 0.07546142 0.0357 0.5142 2.0143
20 A% 28.8470137 0.07655400 0.0453 0.5376 2.0630
21 Bg7  30.7117485 0.07753392 0.0540 0.5596 2.1187
22 AP 32.5965148 0.07837940 0.0396 0.6128 2.1644
23 AP 34.4988383 0.07912700 0.0477 0.6340 2.2080
24 A 36.4163328 0.07977408 0.0540 0.6516 2.2565
25 AZ»®  38.3468951 0.08033400 0.0596 0.6676 2.3037
26 N2 40.2885464 0.08080691 0.0625 0.6782 2.3393
27  NZT 422395410 0.08120210 0.0625 0.6830 2.3609
28 M2 44.1986746 0.08155581 0.0721 0.6272 2.3983
29 M2 46.1643984 0.08183181 0.0721 0.6300 2.4054
30 MZ° 481357634 0.08207146 0.0721 0.6323 2.4160
31 M3' 50.1118679 0.08227285 0.0721 0.6343 2.4251
32 M32  52.0919461 0.08244173 0.0721 0.6360 2.4327
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o(12) = 0.008349 (s =28, t =8, w=17),
7(12) = 0.010475 (s =11), G(12)<76 (v =32).

15. PERMISSIBLE EXPONENTS FOR THIRTEENTH POWERS

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents A4 listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 3<s<15, the condition (§) of Theorem 3.4 is
satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied in
this range of s, we deduce that one may take 7;; =0 (I = 1,2) for 3<s<15. When
j =6or7and s = 16,17,18, meanwhile, we must resort to Theorem 3.4(II)(1).
Here we note that condition (iii) is satisfied, and thus the estimate (4.1) holds for
Jj =6 and [ = 2,3, and likewise for j = 7 and | = 2 with x;; = % and 7;; = 1.
Next, when j = 8 and s = 19,20, we may apply case () of Theorem 3.4(Ib) in
combination with the condition (iii) to deduce that one may take 75 2 = 0.

In order to discuss permissible exponents for 21<s<28, we apply case (Ic) of
Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
7 =9or 10 and 11<j + (<12, one has J = 1, and hence one may take

04 = 0.0190100, J5 = 0.0738636, ds = 0.4222375, &9 = 0.7792591.
Thus we deduce that one may take
Tou = (04 + 05) < 0.01032  whenever $1<0.073360 (I = 2,3),
and that one may take
Ti04 = 305 < 0.01478  whenever ¢;<0.073360 (I =2),
and otherwise, one may take
T4 = 75610 < 0.07793 (1 =2).

As in the previous cases, our computations for s>29 depend on first obtaining
preliminary estimates by applying the process M for 29<s<36 (noting (5.26) and
checking (Dy) or (D3)), and D*® for s>37. In this way we obtain the preliminary
permissible exponents

Moo = 45.284,  A3p = 47.240, Az = 49.203, A3p = 51.171,
A3z = 53.144, N34 = 55.122,  A35 = 57.102, A3g = 59.086,
and by virtue of the preliminary exponent
o(13) =0.00755 (s=31,t=9, w=18),
we have also
As = max{2s — 13, 59.086 + 2(s — 36)(1 — 0.00755)}

for s > 36. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.
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Table of permissible exponents for k = 13

s Process
3 B;
4 Bz
5 AP

6 By
7 B?
8 By
9 AY?

10 A2
11 A
12 AP
13 A2
14 A2
15 A7
16 B
17 A2
18 A2
19 A2
20 A7
21 A2
22 AZH?
23 B
24 A%?
25 A}
26 A7
27 A}
28 A}
29 N

30 N

31 M3

32 M?
33 M
34 M3
35 M
36 N3O

§>37 D*

As
3.0139128
4.0980713

5.2480334
6.4550068

7.7136017
9.0257224

10.3855801
11.7953083
13.2521623
14.7557170
16.3039366
17.8953488
19.5276970
21.1988910

22.9062626
24.6473038
26.4190897
28.2190701
30.0445818
31.8929000
33.7616279

35.6483904
37.5510006
39.4675269
41.3961543
43.3352806
45.2834077
47.2392765
49.2018815
51.1701090
53.1431803
55.1203776
57.1010835
59.0849135

o(13) = 0.007556

7(13) = 0.009545

(s =12),

$1
0.00695637

0.02818356

0.03843282
0.04355532

0.04663575
0.04965016

0.05159785
0.05380951
0.05568206
0.05756333
0.05930365
0.06099508
0.06257992
0.06409230

0.06549065
0.06679816
0.06798261
0.06907751
0.07007187
0.07095680
0.07175359

0.07245756
0.07307633
0.07362249
0.07409771
0.07451110
0.07486365
0.07516706
0.07543499
0.07565390
0.07584409
0.07600614
0.07614400
0.07627230

(s=31,t¢
G(13)<84

?;

0.0200
0.0344
0.0166

0.0320
0.0428
0.0317
0.0429
0.0319
0.0433
0.0324
0.0444

0.0345
0.0460
0.0323
0.0421
0.0302
0.0390
0.0470

0.0336
0.0401
0.0470
0.0521
0.0566
0.0577
0.0577
0.0666
0.0666
0.0666
0.0666
0.0666
0.0718

=9, w

g:l bi

0.0636
0.0811
0.1095

0.1307
0.1471
0.1880
0.2072
0.2510
0.2724
0.3188
0.3427

0.3928
0.4176
0.4638
0.4868
0.5371
0.5591
0.5797

0.6289
0.6470
0.6654
0.6805
0.6939
0.7010
0.7053
0.6538
0.6565
0.6588
0.6607
0.6624
0.5990

— 18),

0.8876

1.1586
1.3592
1.4644
1.5517
1.6178
1.6782
1.7316
1.7823

1.8359
1.8877
1.9380
1.9866
2.0395
2.0860
2.1319
2.1808
2.2212
2.2610
2.3067
2.3485
2.3754
2.3948
2.4262
2.4365
2.4467
2.4555
2.4629
2.4879

(v = 36).
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(a) s = 29,30. With process N7, one finds that Lemma 5.7(I") holds with
u = s — 11, by virtue of condition (A;).

(b) 31<s<35. With process Mj, one finds that Lemma 5.7(I) holds with u =
s — 10, by virtue of conditions (D), (C1), (Ca), (Cs).

(c) s = 36. With process N§, one finds that Lemma 5.7(1") holds with u = s—9,
by virtue of condition (A;).

(d) s=37. One finds that process D* applies.

16. PERMISSIBLE EXPONENTS FOR FOURTEENTH POWERS

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents A4 listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 3<s<16, the condition (&) of Theorem 3.4 is
satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied
in this range of s, we deduce that one may take 7;; = 0 (I = 1,2) for 3<s<16.
When j = 7 or 8 and 17<s<20, meanwhile, we must resort to Theorem 3.4(II)(1).
Here we note that condition (iii) is satisfied, and thus the estimate (4.1) holds for
J = 7,8 with x;2 = % and 7;2 = 1. Next, when 7 = 9 and s = 21, we may apply
case () of Theorem 3.4(Ib) in combination with the condition (iii) to deduce that
one may take 79 o = 0.

In order to discuss permissible exponents for 22<s<30, we apply case (Ic) of
Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
7 =9and [ =2, one has J = 2, and hence one may take

04 = 0.0018248, 65 = 0.0107720, dg = 0.1314920, 419 = 0.2835673,
whence we may take
To,l = %(64 + J5) < 0.00140 whenever ¢1<0.070116 (I = 2).

Also from §23, we find that when j = 9,10,11 and 12<j + (<13, one has J = 1,
and hence one may take

04 = 0.0156211, J5 = 0.0633584, ds = 0.1434849,
0g = 0.3829073, 410 = 0.7106189, 911 = 0.9079284.

Thus we deduce that one may take
To| = %(54 + 05) < 0.00878 whenever ¢1<0.068568 (I = 2,3),
that one may take
Ti0, = %(55 < 0.01268 whenever ¢;<0.068568 (I =2,3),
and that one may take

T11,0 = ﬁ511 < 0.08254 (I =2).
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Table of permissible exponents for k = 14

Process
3.2
By

oo o
O S SRS F RS F O

= 505%3?;0“5215\: o ot
N

o> o
S:&
o

26,3
Bi20

As
3.0113494
4.0856057

5.2216967
6.4118310
7.6492691
8.9350975
10.2671180
11.6442024
13.0662900

14.5316795
16.0399382

17.5892784
19.1785686
20.8058286
22.4692736
24.1667258
25.8960050
27.6547883
29.4407200
31.2515093
33.0849211

34.9387022
36.8107871
38.6992193

40.6021475
42.5178927
44.4449274
46.3818646
48.3274553
50.2805449
52.2401670
54.2054937
56.1756866
58.1501035
60.1281620

$1
0.00567466

0.02484611

0.03476683
0.03979118

0.04248943

0.04500717
0.04699577
0.04876376
0.05051435

0.05209364
0.05367993

0.05515430
0.05660418
0.05796461
0.05926701
0.06048642
0.06162954
0.06268866
0.06366289
0.06455699
0.06537338

0.06610731
0.06676863
0.06736052

0.06788535
0.06835016
0.06876037
0.06912079
0.06943614
0.06970829
0.06994609
0.07015541
0.07033184
0.07048574
0.07061847

?;

0.0160
0.0303

0.0383
0.0277
0.0373
0.0268

0.0370
0.0268

0.0373
0.0273
0.0383
0.0287
0.0398
0.0306
0.0409
0.0276
0.0367
0.0449

0.0337
0.0408
0.0469

0.0357
0.0410
0.0458
0.0500
0.0536
0.0536
0.0536
0.0619
0.0619
0.0619
0.0619

g:l bi

0.0557
0.0728

0.0834
0.1175
0.1317
0.1686

0.1855
0.2251

0.2442
0.2865
0.3079
0.3527
0.3756
0.4230
0.4458
0.4884
0.5102
0.5306
0.5776
0.5967
0.6137

0.6616
0.6774
0.6916
0.7046
0.7161
0.7206
0.7245
0.6767
0.6793
0.6815
0.6834

1.1041
1.2919
1.4194

1.4979
1.5676

1.6228
1.6759
1.7234
1.7725
1.8209
1.8711
1.9192
1.9661
2.0125
2.0596

2.1056
2.1481
2.1932

2.2350
2.2719
2.3080
2.3493
2.3867
2.4066
2.4242
2.4527
2.4637
2.4733
2.4817
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s Process As 1 o} SO i bk
38 M?g 62.1093556 0.07073278 0.0619 0.6851 2.4889
39 Ngg 64.0933213 0.07083658 0.0667 0.6264 2.5149
40 Néw 66.0795485 0.07091753 0.0667 0.6274 2.5175

s=41 DS

o(14) = 0.006895 (s =34, t =10, w = 19),
7(14) = 0.008770 (s =13), G(14)<92 (v = 40).
As in the previous cases, our computations for s>31 depend on first obtaining
preliminary estimates by applying the process M§ for 31<s<40 (noting (5.26) and

checking (Dy) or (D3)), and D*® for s>41. In this way we obtain the preliminary
permissible exponents

A3 = 48.328, Asp = 50.281, N33 = 52.241, 34 = 54.206, M35 = 56.177,

Aag = 58.151, A37 = 60.129, A3g = 62.110, 39 = 64.094, A49 = 66.080,

and by virtue of the preliminary exponent
o(14) = 0.00689 (s =34, t =10, w = 19),
we have also
As = max{2s — 14, 66.080 + 2(s — 40)(1 — 0.00689)}

for s > 40. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) 31<s<33. With process N7;, one finds that Lemma 5.7(I’) holds with u =
s — 12, by virtue of condition (A;).

(b) 34<s<37. With process Nj,, one finds that Lemma 5.7(I’) holds with u =
s — 11, by virtue of condition (A;).

(c) s = 38. With process M7, one finds that Lemma 5.7(I) holds with u = s—11,
by virtue of conditions (D;), (C1), (C2), (Cs).

(d) s = 39,40. With process N, one finds that Lemma 5.7(I’) holds with u =
s — 10, by virtue of condition (A1).

(e) s=41. One finds that process D*® applies.



56 R. C. VAUGHAN AND T. D. WOOLEY

17. PERMISSIBLE EXPONENTS FOR FIFTEENTH POWERS

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents A, listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 3<s<17, the condition (§) of Theorem 3.4 is
satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied
in this range of s, we deduce that one may take 7;; = 0 (I = 1,2) for 3<s<17.
When j = 7,8,9 and 18<s<22, meanwhile, we must resort to Theorem 3.4(II)(1).
Here we note that condition (iii) is satisfied, and thus the estimate (4.1) holds for
J=17,8,9 with x; 0 = % and 72 = 1. Next, when j = 10 and s = 23, we may apply
case (/3) of Theorem 3.4(Ib) in combination with the condition (iii) to deduce that
one may take 1192 = 0.

In order to discuss permissible exponents for 24<s<33, we apply case (Ic) of
Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
7 =10 and [ = 2, one has J = 2, and hence one may take

05 = 0.0088563 and d19 = 0.2565541,
whence we may take
Tio4 = 305 < 0.00178 whenever ¢;<0.065621 (I = 2).
Further, when 7 = 11,12 and 13<j 4+ (<14, one has J = 1, and hence one may take
05 = 0.0536213, dg = 0.1264298, 412 = 1.0354619.
Thus we deduce that one may take
T, = ﬁ(ég) + d0g) < 0.01637 whenever ¢;<0.063360 (I =2,3),
and that one may take
Ti20 = 15012 < 0.08629 (I = 2).

As in the previous cases, our computations for s>34 depend on first obtaining
preliminary estimates by applying the process M7, for 34<s<44 (noting (5.26) and
checking (D;) or (D2)), and D?® for s>45. In this way we obtain the preliminary
permissible exponents

A34 = 03.323, M35 = 55.280, A3 =5H7.243, A3y =59.210,

A3s = 61.182, A39 = 63.157, Ay = 65.136, A4 = 67.118,
A2 = 69.102, Mgz = 71.088, Ay = 73.076,
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and by virtue of the preliminary exponent
o(15) =0.00633 (s=37,t=11, w = 21),
we have also
As = max{2s — 15, 73.076 + 2(s — 44)(1 — 0.00633)}

for s > 44. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) s = 34,35. With process N7, one finds that Lemma 5.7(I") holds with
u = s — 13, by virtue of condition (A;).

(b) 36<s<40. With process N7,, one finds that Lemma 5.7(I") holds with u =
s — 12, by virtue of condition (A;).

(c) s = 41. With process M7, one finds that Lemma 5.7(I) holds with u = s—12,
by virtue of conditions (D), (C1), (C2), (Cs).

(d) s = 42,43. With process N7, one finds that Lemma 5.7(I") holds with
u = s — 11, by virtue of condition (A;).

(e) s=44. One finds that process D*® applies.

Table of permissible exponents for k = 15

s Process s 1 oy Zzl b P
3 B; 3.0092359  0.00461792

4  Big 4.0742295 0.02173146

5 A 5.1987873 0.03172823

6 Byg 6.3738989 0.03647237 0.0116 0.0481

7T Bl 7.5936427 0.03905794 0.0269 0.0659

8§ A3 8.8571841 0.04113748 0.0342 0.0753

9 Byy  10.1649995 0.04309441 0.0236 0.1058 1.0461
10 A 11.5141981 0.04456907 0.0327 0.1189 1.2336
11 Byis  12.9059619 0.04616698 0.0222 0.1517 1.3792
12 A% 14.3381411 0.04752336  0.0321 0.1674 1.4522
13 Bgyi  15.8111209 0.04895330 0.0223 0.2032 1.5241
14 A% 17.3230870 0.05024754 0.0321 0.2205 1.5749
15 A% 18.8736139 0.05156238 0.0229 0.2592 1.6271
16 A% 20.4609219 0.05278515 0.0331 0.2784 1.6717
17 A™? 220838491 0.05398415 0.0239 0.3190 1.7169
18 A% 23.7405373 0.05510909 0.0340 0.3394 1.7623
19 A% 25.4293639 0.05618735 0.0257 0.3830 1.8090
20 A% 27.1483206 0.05719334 0.0356 0.4044 1.8549
21 A2 28.8955107 0.05813950 0.0271 0.4492 1.9020
22 AZ¥?  30.6688816 0.05901573 0.0367 0.4710 1.9480
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s Process
23 A23,2
39
25 AX?
26 A2
27 AT?
28 Bi%,
29 A292
35,2
30 Al
31 A3l2
32 A“’l”%’2
12
34 N3
35 N
36 NS
37 NjT
38 N33
39 NP
40  N{P
41 MY
42
42 N
i
43 N}M
s>44 DS

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents A, listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 3<s<18, the condition (§) of Theorem 3.4 is
satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied
in this range of s, we deduce that one may take 7;; = 0 (I = 1,2) for 3<s<18.
When j = 8,9,10 and 19<s<24, meanwhile, we must resort to Theorem 3.4(II)(1).
Here we note that condition (iii) is satisfied, and thus the estimate (4.1) holds for

o(15) = 0.006338

R. C. VAUGHAN AND T. D. WOOLEY

As
32.4664265
34.2861492
36.1261310
37.9844896
39.8594364
41.7493055

43.6525286
45.5676489
47.4933457
49.4284091
51.3717431
53.3223547
55.2793490
57.2419678
59.2094705
61.1812515
63.1567645
65.1355287
67.1171222
69.1012148
71.0874163

7(15) = 0.008114

(s = 14),

$1
0.05982581
0.06056957
0.06125062
0.06186873
0.06242704
0.06293025

0.06338099
0.06378269
0.06414041
0.06445755
0.06473789
0.06498462
0.06520081
0.06539241
0.06555771
0.06570293
0.06582965
0.06594009
0.06603623
0.06612247
0.06619342

?;
0.0239
0.0320
0.0397
0.0290
0.0358
0.0417

0.0310
0.0359
0.0405
0.0444
0.0479
0.0500
0.0500
0.0578
0.0578
0.0578
0.0578
0.0578
0.0578
0.0623
0.0623

Zgzl b

0.5104
0.5305
0.5499
0.5938
0.6119
0.6284

0.6730
0.6878
0.7015
0.7139
0.7251
0.7335
0.7376
0.6939
0.6966
0.6991
0.7012
0.7031
0.7047
0.6500
0.6511

(s =37, ¢t =11, w = 21),
(v =43).

G(15)<100

b5
1.9912
2.0351
2.0782
2.1226
2.1634
2.2023

2.2453
2.2808
2.3144
2.3488
2.3839
2.4158
2.4338
2.4654
2.4771
2.4875
2.4965
2.5045
2.5115
2.5383
2.5409

18. PERMISSIBLE EXPONENTS FOR SIXTEENTH POWERS

j=8,9,10 with x;2 = 3 and 755 = 1.

In order to discuss permissible exponents for 25<s<36, we apply case (Ic) of
Theorem 3.4. In the notation of the latter theorem, we find from §23 that when

j=11and [ =1 or 2, one has J = 2, and hence one may take

d5 = 0.0073658,

d¢ = 0.0241263 and d;2 = 0.4026992,
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whence we may take
T11,0 = 17(05 + 06) < 0.00287 whenever ¢;<0.061146 (I =1,2).

Further, when 7 = 11,12, 13 and 14<j + [<15, one has J = 1, and hence one may
take

05 = 0.0460456, o6¢ = 0.1127790, 912 = 0.9585035, 13 = 1.1659645.
Thus we deduce that one may take
T11,0 = 77 (05 + 0) < 0.01444 whenever ¢;<0.059762 (I = 3),
that one may take
12, = g0 < 0.01880 whenever ¢<0.059762 (I = 2),
and that one may take
T3] = %513 < 0.08969 (I =2).

As in the previous cases, our computations for s>37 depend on first obtaining
preliminary estimates by applying the process M7, for 37<s<47 (noting (5.27) and
checking (Dy) or (D3)), and D*® for s>48. In this way we obtain the preliminary
permissible exponents

A37 = 58.320, A3g = 60.280, A39 = 62.245, Ny = 64.215,

A1 = 66.188, Ayp = 68.164, M43 =70.143, Mgy = 72.125,
s = T4.110,  Agg = 76.096, 47 = 78.084,

and by virtue of the preliminary exponent
o(16) = 0.00586 (s =41,t =11, w = 23),
we have also
As = max{2s — 16, 78.084 + 2(s — 47)(1 — 0.00586)}

for s > 47. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) s = 37,38. With process N7;, one finds that Lemma 5.7(I’) holds with
u = s — 14, by virtue of condition (A;).

(b) 39<s<43. With process N7,, one finds that Lemma 5.7(1") holds with u =
s — 13, by virtue of condition (A;).
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(c) s = 44. With process M7,, one finds that Lemma 5.7(I) holds with u = s—13,
by virtue of conditions (D), (C1), (C2), (Cs).

(d) 45<s<47. With process N7;, one finds that Lemma 5.7(I’) holds with u =
s — 12, by virtue of condition (A;).

(e) s>48. One finds that process D* applies.

Table of permissible exponents for k = 16

s Process s 01 o} i;l O Oy

3 Byi 30074816 0.00374079

4 Byg  4.0638321 0.01883046

5 A 5.1787385  0.02919246

6 Byg 6.3412246 0.03370200 0.0083 0.0420

7T B} 7.5457229 0.03613827 0.0241 0.0602

8§ A3 8.7902441 0.03788514 0.0308 0.0687

9 Bys  10.0769155 0.03976160 0.0200 0.0957 0.9893
10 A 11.4019639 0.04102548 0.0289 0.1082 1.1825
11 By 127671799 0.04247669 0.0185 0.1375 1.3449
12 A% 14.1702162 0.04365257 0.0280 0.1522 1.4130
13 Bgy;  15.6119303 0.04493631 0.0182 0.1842 1.4861
14 A% 17.0906280 0.04608149 0.0276 0.2003 1.5333
15 Bgy;  18.6062852 0.04726736 0.0188 0.2354 1.5841
16 A% 20.1573791 0.04836825 0.0285 0.2531 1.6259
17 B;ii 217431712 0.04946474 0.0198 0.2902 1.6685
18 A% 23.3621148 0.05049786 0.0293 0.3090 1.7107
19 AP 25.0129891 0.05150184 0.0211 0.3485 1.7539
20 A% 26.6941169 0.05244686 0.0306 0.3682 1.7972
21 A3M® 284039654 0.05334847 0.0229 0.4098 1.8413
22 AP 30.1407641 0.05419218 0.0322 0.4304 1.8854
23 AZY?  31.9028113 0.05498480 0.0243 0.4729 1.9297
24 AZy®  33.6883143 0.05572055 0.0329 0.4931 1.9734
25 Biyl,  35.4955330 0.05640278 0.0205 0.5297 2.0143
26 A9 37.3227332 0.05703073 0.0279 0.5485 2.0548
27 A7 39.1682523 0.05760740 0.0351 0.5668 2.0961
28 Biyy;  41.0304795 0.05813390 0.0408 0.5828 2.1367
29 AT? 429078717 0.05861191 0.0313 0.6252 2.1765
30 A7 44.7989875 0.05904508 0.0369 0.6410 2.2140
31 Byyy, 46.7024729 0.05943588 0.0414 0.6547 2.2506
32 APP? 48.6170673 0.05978708 0.0316 0.6971 2.2884
33 A% 50.5416092 0.06010180 0.0358 0.7101 2.3210
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s Process s »1 o 25:1 oi O

34 A% 524750359 0.06038318 0.0396 0.7220 2.3515
35 ASY?  54.4163771 0.06063404 0.0429 0.7329 2.3839
36 A?  56.3647518 0.06085714 0.0459 0.7428 2.4179
37 N3 58.3193587 0.06105480 0.0469 0.7488 2.4413
38 N3 60.2794807 0.06122977 0.0469 0.7526 2.4577
39 N3 62.2444892 0.06138528 0.0543 0.7115 2.4878
40 N 64.2137908 0.06152144 0.0543 0.7141 2.4987
41 N2 66.1868812 0.06164181 0.0543 0.7164 2.5084
42 N&  68.1633061 0.06174778 0.0543 0.7185 2.5169
43 NE 701426626 0.06184097 0.0543 0.7203 2.5246
44 MY 721245941 0.06192285 0.0543 0.7219 2.5313
45 N 741088058 0.06199601 0.0584 0.6708 2.5587
46 N2 76.0949856 0.06205826 0.0584 0.6718 2.5613
47 NA 78.0829008 0.06211345 0.0584 0.6727 2.5636
s>48 D®

o(16) = 0.005864 (s =41, t = 11, w = 23),

7(16) = 0.007549 (s =15), G(16)<109 (v = 47).

19. PERMISSIBLE EXPONENTS FOR SEVENTEENTH POWERS

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents A listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 3<s<19, the condition (§) of Theorem 3.4 is
satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied in
this range of s, we deduce that one may take 7;; =0 (I = 1,2) for 3<s<19. When
8<j<11 and 20<s<27, meanwhile, we must resort to Theorem 3.4(II)(1) and (2).
Here we note that condition (iii) is satisfied for 20<s<26, and that (II)(2) applies
for s = 27, and thus the estimate (4.1) holds for 8<j<11 and | = 2,3 with x,; = %
and 7;; = 1. Note here that when s = 27, the relevant value of o is so small that
the condition ¢; + - -+ + ¢;>%(1 — o) ~! is satisfied transparently.

In order to discuss permissible exponents for 28<s<39, we apply case (Ic) of
Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
j =12 and [ = 2, one has J = 2, and hence one may take

d¢ = 0.0205621 and 912 = 0.3706630,
whence we may take

Ti2, = g0 < 0.00343  whenever ¢,<0.057704 (I =2).
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Further, when 7 = 12,13, 14 and 15<j + [<16, one has J = 1, and hence one may
take
d¢ = 0.1004200, d7 = 0.1840767, d12 = 0.8905163,

013 = 1.0847742, 14 = 1.2966345.

Thus we deduce that one may take
T12, = $06 < 0.01674 whenever ¢,<0.056530 (I = 3),
that one may take
Ti31 = 15 (06 + 07) < 0.02189 whenever ¢;<0.055777 (I = 2),

and otherwise,
T13,] = %513 < 0.08345 (l — 273)7

and that one may take
Tiag = 15014 < 0.09262 (I =2).

As in the previous cases, our computations for s>40 depend on first obtaining
preliminary estimates by applying the process M7, for 40<s<51 (noting (5.27) and
checking (D1) or (D2)), and D*® for s>52. In this way we obtain the preliminary
permissible exponents

Ago = 63.318,  Aq1 =65.281, Ago =67.248, A43 =69.219,

Mg = 71193, Ags = 73.170, Aag = 75.150, 47 = 77.133,
Mg = 79.117, Ao = 81.103, Aso = 83.091, 51 = 85.080,

and by virtue of the preliminary exponent
o(17) = 0.00545 (s =44, t =12, w = 24),
we have also
As = max{2s — 17, 85.080 + 2(s — 51)(1 — 0.00545)}

for s > 51. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) s = 40,41. With process N7,, one finds that Lemma 5.7(I') holds with
u = s — 15, by virtue of condition (A;).

(b) 42<s<46. With process N7, one finds that Lemma 5.7(I’) holds with u =
s — 14, by virtue of condition (A;).

(c) 47<s<50. With process N7,, one finds that Lemma 5.7(I’) holds with u =
s — 13, by virtue of condition (A;).

(e) s=51. One finds that process D*® applies.
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Table of permissible exponents for k =17

Process
3,2
B1,4
4,2

oo =
N 00N \]“wmi—kncnl—l
Moo oo

= 3

33,3

Bi55s
34,3

Bis'5s

As
3.0061404
4.0554335
5.1619828
6.3136071
7.5040992
8.7323022

10.0004288
11.3043577
12.6459140
14.0233197
15.4369512
16.8860867
18.3702735
19.8886761
21.4405373
23.0247863
24.6403737
26.2860071
27.9604002
29.6620874
31.3896134
33.1414245
34.9159903
36.7117441
38.5271601
40.3607211
42.2109803
44.0765377
45.9560566
47.8482757
49.7520144
51.6661665
53.5897087
55.5216990
57.4612719
59.4076368
61.3600741

b1
0.00307019
0.01646473
0.02701166
0.03134018
0.03349964
0.03513032
0.03689292
0.03799316
0.03927903
0.04034662
0.04145984
0.04251950
0.04356583
0.04457565
0.04556572
0.04651864
0.04744334
0.04832721
0.04917555
0.04997915
0.05074142
0.05145731
0.05212921
0.05275480
0.05333611
0.05387253
0.05436691
0.05482022
0.05523415
0.05561097
0.05595308
0.05626250
0.05654168
0.05679304
0.05701880
0.05722114
0.05740216

?;

0.0056
0.0210
0.0278
0.0168
0.0257
0.0330
0.0245
0.0321
0.0239
0.0325
0.0244
0.0332
0.0251
0.0339
0.0259
0.0350
0.0279
0.0362
0.0291
0.0368
0.0295
0.0367
0.0245
0.0310
0.0367
0.0275
0.0328
0.0379
0.0409
0.0318
0.0354
0.0386
0.0414
0.0439

§:1 bi

0.0369
0.0545
0.0630
0.0869
0.0991
0.1097
0.1392
0.1516
0.1831
0.1980
0.2314
0.2477
0.2827
0.3001
0.3366
0.3554
0.3945
0.4131
0.4534
0.4717
0.5126
0.5307
0.5647
0.5818
0.5976
0.6371
0.6521
0.6667
0.6775
0.7177
0.7292
0.7398
0.7493
0.7581

0.9360
1.1377
1.3053
1.3790
1.4456
1.4968
1.5438
1.5855
1.6256
1.6648
1.7059
1.7458
1.7878
1.8289
1.8710
1.9126
1.9544
1.9959
2.0372
2.0725
2.1119
2.1499
2.1879
2.2240
2.2594
2.2946
2.3262
2.3562
2.3843
2.4146
2.4458

63
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s Process s b1 oF b O

40 N{  63.3179278 0.05756359 0.0442 0.7624 2.4638
41  N{f  65.2806096 0.05770757 0.0442 0.7658 2.4789
42 N{2  67.2475940 0.05783611 0.0511 0.7271 2.5076
43 N{$  69.2183942 0.05794990 0.0511 0.7296 2.5178
44  N{#  71.1925852 0.05805112 0.0511 0.7318 2.5269
45  N{  73.1697840 0.05814094 0.0511 0.7337 2.5350
46 N{§  75.1496484 0.05822056 0.0511 0.7355 2.5423
47 N}Y 77.1318848 0.05829175 0.0550 0.6878 2.5738
48 N{§  79.1162028 0.05835376 0.0550 0.6890 2.5767
49  N{§  81.1023673 0.05840894 0.0550 0.6901 2.5793
50 NP9 83.0901643 0.05845772 0.0550 0.6910 2.5816
s>51 D?

o(17) = 0.005454 (s =44, t = 12, w = 24),
7(17) = 0.007060 (s =16), G(17)<117 (v = 50).

20. PERMISSIBLE EXPONENTS FOR EIGHTEENTH POWERS

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents A, listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 3<s<21, the condition (§) of Theorem 3.4 is
satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied
in this range of s, we deduce that one may take 7;; = 0 (I = 1,2,3) for 3<s<21.
When 9<j<12 and 22<s<29, meanwhile, we must resort to Theorem 3.4(II)(1)
and (2). Here we note that condition (iii) is satisfied for 22<s<27, and that (II)(2)
applies for s = 28,29, and thus the estimate (4.1) holds for 9<j<12 and [ = 2,3
with x;; = % and 7;; = 1. Note here that when s = 28,29, the relevant value of o
is so small that the condition ¢1 + --- + (/ﬁj}%(l — o)~ ! is satisfied transparently.

In order to discuss permissible exponents for 30<s<41, we apply case (Ic) of
Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
j =13 and [ = 2, one has J = 2, and hence one may take

d¢ = 0.0176775, 67 =0.0427686 and 14 = 0.5236334,

whence we may take
Ti3y = 15(06 + 07) < 0.00465 whenever ¢;<0.054235 (I =2).

Further, when 7 = 13,14, 15 and 16<j + [<17, one has J = 1, and hence one may
take

d¢ = 0.0901459, 7 = 0.1679365, 14 = 1.2130601, 15 = 1.4286845.
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Thus we deduce that one may take
Tiz,| = %3(56 +07) < 0.01986 whenever ¢;<0.052973 (I = 3),
that one may take
T4, = %57 < 0.02400 whenever ¢1<0.052973 (I =2,3),

and otherwise,
Tiag = 15014 < 0.08665 (I = 2,3),

and that one may take
150 = 15015 < 0.09525 (I =2).

As in the previous cases, our computations for s>42 depend on first obtaining
preliminary estimates by applying the process M7, for 42<s<54 (noting (5.27) and
checking (D) or (D2)), and D*® for s>55. In this way we obtain the preliminary
permissible exponents

Ag2 = 66.358,  Ag3 = 68.318, Ayq = T70.283, Ayg5 = 72.252, Ay = 74.224,

Aar = 76.199, Mg = 78177, Aao = 80.157, 5o = 82.140,
Xs1 = 84.124, Asp = 86.110, As3 = 88.098, 54 = 90.087,

and by virtue of the preliminary exponent
o(18) = 0.00509 (s =47, t =13, w = 26),
we have also
As = max{2s — 18, 90.087 + 2(s — 54)(1 — 0.00509)}

for s > 54. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) 42<s<44. With process N7, one finds that Lemma 5.7(’) holds with u =
s — 16, by virtue of condition (A;).

(b) 45<s<49. With process N3, one finds that Lemma 5.7(I’) holds with u =
s — 15, by virtue of condition (A;).

(c) 50<s<b4. With process N7;, one finds that Lemma 5.7(1") holds with u =
s — 14, by virtue of condition (A;).

(e) s=55. One finds that process D*® applies.
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Table of permissible exponents for k = 18

Process
3,2
By

b?n

SSeY
NN IN - o=
N0 N0 NSNS

e

oy

w ©
)
)

As
3.0050870
4.0484489
5.1469671
6.2893077
7.4676627
8.6816032
9.9332381

11.2185989
12.5388988
13.8936352
15.2823305
16.7049932
18.1609021
19.6497248
21.1706906
22.7231221
24.3060925
25.9186447
27.5596769
29.2280189
30.9224199
32.6415685
34.3841221
36.1487034
37.9339369
39.7384452
41.5608774
43.3999089
45.2542644
47.1227175
49.0040975
50.8972954
52.8012695
54.7150443
56.6377106
58.5684269
60.5064172

P1
0.00254346
0.01447855
0.02493153
0.02933022
0.03123178
0.03275099
0.03438389
0.03537489
0.03647482
0.03749420
0.03846045
0.03943607
0.04036376
0.04128885
0.04218253
0.04306012
0.04390870
0.04473174
0.04552348
0.04628304
0.04700798
0.04769656
0.04834828
0.04896179
0.04953749
0.05007502
0.05057526
0.05103871
0.05146692
0.05186115
0.05222287
0.05255372
0.05285563
0.05313037
0.05337974
0.05360563
0.05380985

b;

0.0034
0.0185
0.0254
0.0135
0.0230
0.0295
0.0213
0.0284
0.0206
0.0285
0.0209
0.0290
0.0215
0.0296
0.0222
0.0306
0.0237
0.0321
0.0253
0.0331
0.0263
0.0337
0.0266
0.0334
0.0214
0.0274
0.0330
0.0371
0.0291
0.0335
0.0374
0.0283
0.0317
0.0347

0.0328
0.0497
0.0581
0.0787
0.0913
0.1006
0.1278
0.1390
0.1683
0.1816
0.2126
0.2273
0.2599
0.2757
0.3097
0.3268
0.3628
0.3807
0.4180
0.4359
0.4739
0.4917
0.5304
0.5475
0.5792
0.5952
0.6106
0.6234
0.6620
0.6753
0.6874
0.7246
0.7356
0.7458

0.8757
1.0979
1.2547
1.3486
1.4100
1.4650
1.5081
1.5495
1.5872
1.6240
1.6626
1.7001
1.7397
1.7781
1.8185
1.8574
1.8979
1.9370
1.9773
2.0163
2.0558
2.0894
2.1257
2.1626
2.1972
2.2327
2.2662
2.2979
2.3305
2.3597
2.3872
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s Process As 01 o} S b @k

40 AT2? 624509681 0.05399414 0.0375 0.7552 2.4132
41 ATL? 644014262 0.05416015 0.0399 0.7637 2.4418
42 N2 66.3571950 0.05430945 0.0417 0.7709 2.4685
43 N2 68.3177304 0.05444347 0.0417 0.7744 2.4838
44 N} 702825406 0.05456372 0.0417 0.7776 2.4977
45 N 722511825 0.05467161 0.0483 0.7410 2.5253
46 NS 742232486 0.05476794 0.0483 0.7433 2.5349
47  N{{  76.1983771 0.05485415 0.0483 0.7454 2.5434
48 NI 781762412 0.05493118 0.0483 0.7473 2.5512
49 N 80.1565468 0.05499994 0.0483 0.7490 2.5581
50 NP 82.1390360 0.05506161 0.0519 0.7040 2.5899
51 NPl 84.1234628 0.05511611 0.0519 0.7052 2.5927
52 NP2 86.1096189 0.05516484 0.0519 0.7063 2.5953
53 NPJ  88.0973151 0.05520823 0.0519 0.7072 2.5975
54 NPF 90.0863822 0.05524686 0.0519 0.7081 2.5996
$>55 DS

o(18) = 0.005095
7(18) = 0.006630 (s = 17),

(s =47, t =13, w = 26),

G(18)<125 (v = 54).

21. PERMISSIBLE EXPONENTS FOR NINETEENTH POWERS

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents A, listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 3<s<21, the condition (§) of Theorem 3.4 is
satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied in
this range of s, we deduce that one may take 7;; =0 (I = 1,2) for 3<s<21. When
9<j<13 and 22<s<31, meanwhile, we must resort to Theorem 3.4(II)(1) and (2).
Here we note that condition (iii) is satisfied for 22<s<29, and that (II)(2) applies
for s = 30,31, and thus the estimate (4.1) holds for 9<j<13 and [ = 2,3 with
Xj,l = % and 7;; = 1. Note here that when s = 30, 31, the relevant value of o is so
small that the condition ¢; 4+ --- + qu}%(l — o)~ ! is satisfied transparently.

In order to discuss permissible exponents for 32<s<44, we apply case (Ic) of
Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
7 =14 and [ = 2, one has J = 2, and hence one may take

5, = 0.0375713, and 814 = 0.4889692,

whence we may take

Tia] = %57 < 0.00537 whenever ¢1<0.051509 (I = 2).



68 R. C. VAUGHAN AND T. D. WOOLEY
Further, when 57 = 14,15 and 17<j 4+ (<18, one has J = 1, and hence one may take
07 = 0.1541435, g = 0.2475913, 914 = 1.1394461,

015 = 1.3428361, 416 = 1.5615789.

Thus we deduce that one may take
T4, = %57 < 0.02203 whenever ¢;<0.050425 (I = 3),
that one may take
Ti5,0 = %(57 + 0g) < 0.02679 whenever ¢1<0.049834 (I =2,3),
and otherwise,

150 = 15015 < 0.08953 (1= 2,3).

As in the previous cases, our computations for s>45 depend on first obtaining
preliminary estimates by applying the process M5 for 45<s<58 (noting (5.27) and
checking (D;) or (D2)), and D?® for s>59. In this way we obtain the preliminary
permissible exponents

Aas = 71.356, g6 = 73.319, g7 = 75.286, A4g = 77.256, Ag9 = 79.229,

Aso = 81.205, 51 = 83.183, M52 =85.164, As53 =87.147, A54 = 89.131,
Ass = 91.117, A5 = 93.105, A5y = 95.094, 55 = 97.084,

and by virtue of the preliminary exponent
0(19) = 0.00478 (s =50, t = 13, w = 28),
we have also
As = max{2s — 19, 97.084 + 2(s — 58)(1 — 0.00478)}

for s > 58. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) 45<s<47. With process N7, one finds that Lemma 5.7(I’) holds with u =
s — 17, by virtue of condition (A;).

(b) 48<s<52. With process Nj5, one finds that Lemma 5.7(I’) holds with u =
s — 16, by virtue of condition (A;).

(c) 53<s<58. With process N;,, one finds that Lemma 5.7(I’) holds with u =
s — 15, by virtue of condition (A;).

(e) s=59. One finds that process D*® applies.
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FURTHER IMPROVEMENTS IN WARING’S PROBLEM, IV

Table of permissible exponents for k = 19

Process

As
3.0042273
4.0423620
5.1333114
6.2663273
7.4343072
8.6357245
9.8725415

11.1414574
12.4430359
13.7775620
15.1440547
16.5429734
17.9734687
19.4355306
20.9284296
22.4517574
24.0047167
25.5866021
27.1964861
28.8334329
30.4963841
32.1842434
33.8958472
35.6300014
37.3854842
39.1610622
40.9555027
42.7675849
44.5961098
46.4399090
48.2978543
50.1688626
52.0518997
53.9459843
55.8501910
57.7636509
59.6855524

$1
0.00211363

0.01272951
0.02298073
0.02733191
0.02929710
0.03067723
0.03215755
0.03308734
0.03404381
0.03500339
0.03585180
0.03674656
0.03757479
0.03842022
0.03922960
0.04003558
0.04081410
0.04157726
0.04231369
0.04302673
0.04371136
0.04436768
0.04499335
0.04558788
0.04615045
0.04668075
0.04717878
0.04764484
0.04807945
0.04848337
0.04885769
0.04920355
0.04952220
0.04981500
0.05008342
0.05032891
0.05055296

?;

0.0164
0.0233
0.0286
0.0205
0.0266
0.0186
0.0252
0.0179
0.0250
0.0178
0.0253
0.0182
0.0259
0.0189
0.0269
0.0199
0.0281
0.0216
0.0295
0.0229
0.0304
0.0239
0.0307
0.0240
0.0304
0.0186
0.0243
0.0296
0.0338
0.0258
0.0307
0.0342
0.0366

Zgﬂ o

0.0457
0.0540
0.0608
0.0843
0.0929
0.1180
0.1282
0.1555
0.1674
0.1962
0.2096
0.2399
0.2544
0.2861
0.3020
0.3348
0.3518
0.3865
0.4037
0.4392
0.4565
0.4928
0.5096
0.5463
0.5628
0.5922
0.6075
0.6222
0.6350
0.6710
0.6849
0.6960
0.7053

1.0573

1.2102
1.3222
1.3792
1.4369
1.4766
1.5175
1.5529
1.5885
1.6239
1.6601
1.6966
1.7332
1.7708
1.8075
1.8464
1.8832
1.9222
1.9592
1.9978
2.0346
2.0727
2.1057
2.1383
2.1738
2.2073
2.2402
2.2740
2.3043
2.3329

69
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s Process s 1 o} Zle ¢ P

40 A1P? 61.6151397 0.05075705 0.0382 0.7129 2.3620
41 A% 63.5517128 0.05094263 0.0397 0.7198 2.3888
42 AT2® 654946250 0.05111110 0.0410 0.7262 2.4141
43 ATP® 67.4432807 0.05126380 0.0422 0.7321 2.4379
44 ATS? 69.3971334 0.05140202 0.0433 0.7376  2.4632
45 N 71.3556823 0.05152695 0.0395 0.7819 2.4876
46 N 73.3184698 0.05163973 0.0395 0.7852 2.5017
47 NI 752850793 0.05174146 0.0395 0.7882 2.5146
48 N 77.2551336 0.05183320 0.0458 0.7534 2.5413
49  N{  79.2282862 0.05191569 0.0458 0.7557 2.5502
50 NDO  81.2042263 0.05198993 0.0458 0.7577 2.5583
51 NP} 83.1826716 0.05205667 0.0458 0.7595 2.5657
52 NP2 85.1633672 0.05211663 0.0458 0.7611 2.5723
53  ND§  87.1460856 0.05217061 0.0492 0.7186 2.6042
54 NP} 89.1306147 0.05221882 0.0492 0.7197 2.6070
55 NP5 91.1167691 0.05226214 0.0492 0.7208 2.6095
56 NPS  93.1043803 0.05230098 0.0492 0.7217 2.6118
57 NPT 95.0932973 0.05233578 0.0492 0.7226 2.6138
58  NPP 97.0833838 0.05236696 0.0492 0.7234 2.6156
s>59 DS

o(19) = 0.004780 (s =50, t = 13, w = 28),
7(19) = 0.006252 (s =18), G(19)<134 (v =58).

22. PERMISSIBLE EXPONENTS FOR TWENTIETH POWERS

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents A, listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 3<s<23, the condition (d) of Theorem 3.4 is
satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied in
this range of s, we deduce that one may take 7,; =0 (I = 1,2) for 3<s<23. When
10<j<14 and 24<s<33, meanwhile, we must resort to Theorem 3.4(II)(1) and (2).
Here we note that condition (iii) is satisfied for 24<s<30, and that (II)(2) applies
for s = 31,32,33, and thus the estimate (4.1) holds for 10<j<14 and [ = 2,3 with
Xl = % and 7;; = 1. Note here that when s = 31, 32, 33, the relevant value of o is
so small that the condition ¢q + - - - + qﬁj}%(l — o)~ is satisfied transparently.

In order to discuss permissible exponents for 34<s<47, we apply case (Ic) of
Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
j =15 and [ = 2, one has J = 2, and hence one may take

07 = 0.0332148, dg = 0.0661378 and d16 = 0.6484502,
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whence we may take
T15, = 1= (07 + Js) < 0.00663 whenever ¢1<0.048742 (I = 2).
Further, when 7 = 15,16 and 18<j 4+ (<19, one has J = 1, and hence one may take
07 = 0.1411109, ds = 0.2285099, 15 = 1.2643687, d16 = 1.4713863.
Thus we deduce that one may take
T15,0 = 1= (67 + 0) < 0.02465 whenever ¢,<0.047586 (I = 3),

and otherwise
Tis1 = 015 < 0.08430 (1 =2,3),

and that one may take
Ti60 = 15016 < 0.09197 (1 =2,3).

As in the previous cases, our computations for s>48 depend on first obtaining
preliminary estimates by applying the process M7, for 48<s<61 (noting (5.27) and
checking (D;) or (Ds)), and D?® for s>62. In this way we obtain the preliminary
permissible exponents

Agg = 76.356, A9 = 78.320, M50 = 80.289, A51 = 82.260, 52 = 84.234,

A5z = 86.211, Asq = 88.190, M55 = 90.171, 56 = 92.154, As7 = 94.138,
Ass = 96.124, Ago = 98.112, Ao = 100.101, Mgy = 102.091,

and by virtue of the preliminary exponent
0(20) = 0.00450 (s =54, t =14, w = 29),
we have also
As = max{2s — 20, 102.091 4 2(s — 61)(1 — 0.00450)}

for s > 61. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) s = 48,49. With process N7, one finds that Lemma 5.7(I") holds with
u = s — 18, by virtue of condition (A;).

(b) 50<s<56. With process N7, one finds that Lemma 5.7(1") holds with u =
s — 17, by virtue of condition (A;).

(c) 57<s<62. With process N7, one finds that Lemma 5.7(1") holds with u =
s — 16, by virtue of condition (A;).

(e) s=63. One finds that process D*® applies.
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R. C. VAUGHAN AND T. D. WOOLEY

Table of permissible exponents for k = 20

Process

33,3
By 55

As
3.0035377
4.0372112
5.1214726
6.2457501
7.4042791
8.5946271
9.8176862

11.0720258
12.3569582
13.6733507
15.0199527
16.3974554
17.8050250
19.2428091
20.7101660
22.2068593
23.7322237
25.2857385
26.8666319
28.4741610
30.1074344
31.7655438
33.4474901
35.1522491
36.8787481
38.6258968
40.3925867
421777082
43.9801557
45.7988398
47.6326920
49.4806744
51.3417836
53.2150565
55.0995728
56.9944581
58.8988854

b1
0.00176883

0.01123775
0.02126317
0.02547440
0.02754990
0.02885933
0.03012126
0.03108406
0.03191458
0.03281045
0.03356385
0.03438079
0.03512761
0.03589874
0.03663479
0.03737393
0.03808882
0.03879475
0.03947826
0.04014501
0.04078835
0.04140990
0.04200611
0.04257718
0.04312142
0.04363868
0.04412832
0.04459040
0.04502494
0.04543236
0.04581314
0.04616803
0.04649788
0.04680367
0.04708646
0.04734736
0.04758756

?;

0.0141
0.0215
0.0263
0.0183
0.0241
0.0162
0.0225
0.0150
0.0221
0.0148
0.0221
0.0293
0.0225
0.0159
0.0234
0.0169
0.0244
0.0182
0.0258
0.0197
0.0271
0.0210
0.0279
0.0216
0.0282
0.0216
0.0276
0.0163
0.0215
0.0264
0.0308
0.0339
0.0276

Zg:1 o

0.0417
0.0504
0.0564
0.0781
0.0862
0.1093
0.1189
0.1436
0.1551
0.1814
0.1941
0.2069
0.2356
0.2652
0.2799
0.3107
0.3260
0.3583
0.3745
0.4079
0.4245
0.4587
0.4751
0.5097
0.5259
0.5606
0.5763
0.6042
0.6187
0.6325
0.6453
0.6559
0.6924

1.0176
1.1705
1.2987
1.3522
1.4113
1.4486
1.4887
1.5221
1.5565
1.5891
1.6243
1.6577
1.6935
1.7277
1.7639
1.7992
1.8352
1.8717
1.9073
1.9443
1.9795
2.0165
2.0515
2.0876
2.1205
2.1507
2.1835
2.2165
2.2467
2.2796



FURTHER IMPROVEMENTS IN WARING’S PROBLEM, IV 73

s Process s 1 o} Zle oi O
40 B3 60.8120763 0.04780826 0.0312 0.7037 2.3097

41 Bjgs,  62.7333008 0.04801065 0.0337 0.7130 2.3370

42 ATS? 64.6618772 0.04819593 0.0356 0.7208 2.3636
43 ATS? 66.5971707 0.04836528 0.0369 0.7276 2.3899
44 ATP® 68.5385926 0.04851983 0.0381 0.7338 2.4148
45 AP® 70.4855980 0.04866069 0.0393 0.7397 2.4384
46 AJ° 724376841 0.04878890 0.0404 0.7451 2.4606
47 ATE? 74.3943883  0.04890547 0.0414 0.7502 2.4837
48 N 76.3552854 0.04901133 0.0375 0.7919 2.5047
49  N{2  78.3199857 0.04910737 0.0375 0.7949 2.5178
50  NDO  80.2881335 0.04919448 0.0435 0.7623 2.5464
51 NB} 822594024 0.04927331 0.0435 0.7647 2.5556
52 NP2 84.2334960 0.04934469 0.0435 0.7668 2.5640
53 NP2 86.2101439 0.04940924 0.0435 0.7687 2.5717
54 NBY 88.1891004 0.04946760 0.0435 0.7704 2.5787
55 ND2  90.1701423 0.04952031 0.0435 0.7720 2.5851
56 NP9 92.1530669 0.04956792 0.0435 0.7735 2.5909
57 NPT 941376919 0.04961094 0.0468 0.7328 2.6199
58 NDE  96.1238487 0.04964967 0.0468 0.7338 2.6224
59 NP2 981113875 0.04968462 0.0468 0.7348 2.6246
60 NSO 100.1001722 0.04971613 0.0468 0.7356 2.6266
61  NS!  102.0900795 0.04974452 0.0468 0.7364 2.6284
62 N2 104.0809983 0.04977011 0.0468 0.7371 2.6301
s=63 D?

o(20) = 0.004501 (s = 54, ¢t = 14, w = 29),
7(20) = 0.005915 (s =19), G(20)<142 (v =62).

23. AUXILIARY PERMISSIBLE EXPONENTS

We collect together in this section the permissible exponents for larger k required
in our calculation of the exponents in §§13-22. We do not work hard here to
establish the sharpest such exponents, since good approximations will suffice.
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Table of permissible exponents for k = 22

Process

As
3.0025439
4.0292912
5.1025520

6.2121725
7.3545751

8.5257736

9.7256814
10.9550112

$1
0.00127191

0.00892335
0.01845031

0.02238321
0.02460381

0.02576186

0.02674629
0.02771586

?;

0.0104
0.0183

0.0225
0.0146

10 P

0.0350
0.0440

0.0492
0.0678 0.9494

Table of permissible exponents for k = 24

Process

As
3.0018708
4.0234059
5.0866022

6.1846118
7.3136219

8.4689321

9.6501924
10.8586937

12.0918680

$1
0.00093536

0.00718285
0.01589207

0.01994744
0.02218427

0.02322785

0.02406834
0.02497080

0.02550777

?;

0.0071
0.0154

0.0195
0.0108

0.0167

10 P

0.0293
0.0386

0.0436
0.0586 0.8645

0.0662 1.0427

Table of permissible exponents for k = 26

Process
3,2
By

&
—
oo

oy
NuNivol

Sy
= oy = Ot

o &

N 00 N =g

LR ET
o

o

As
3.0014072
4.0190100
5.0738636
6.1622494
7.2802564
8.4222375

9.5880882
10.7792591

11.9929177

d1
0.00070358

0.00587034
0.01377891
0.01794221
0.02021446
0.02112895

0.02188651
0.02272621

0.02317152

o

0.0045
0.0129

0.0171
0.0082
0.0141

T b ok

0.0248
0.0341

0.0390
0.0516 0.8018

0.0591 0.9909
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Table of permissible exponents for k = 28

Process

As
3.0010768
4.0156211
5.0633584
6.1434849
7.2523170
8.3829073
9.5356712

10.7106189
11.9079284

13.1262695

$1
0.00053837

0.00484986
0.01198110
0.01623098
0.01858310
0.01935336
0.02005540
0.02066883
0.02124033

0.02163492

?;

0.0026
0.0107
0.0151
0.0179
0.0115

0.0154

10 P

0.0212
0.0301
0.0351
0.0385
0.0526 0.9281
0.0576 1.0629

Table of permissible exponents for k = 30

Process
3,2
B1,4
4,2

Sy

oy
o~ o 0o o

S
= NEOE o

[\JUUOU

=N
—

9,2
B5%0

As
3.0008289
4.0128519
5.0536213
6.1264298

7.2247478
8.3459599

9.4875943

10.6496179
11.8328152

13.0354619
14.2585847

15.5012985

$1
0.00041441

0.00400878
0.01022522
0.01471957

0.01673904
0.01789043

0.01850453
0.01903383
0.01959249
0.01993146
0.02034949
0.02067161

?;

0.0087
0.0134
0.0160
0.0094
0.0135
0.0061

0.0113

321 ¢z Qb:

0.0266
0.0319
0.0350
0.0472
0.0523
0.0641
0.0708

0.8726
1.0225
1.1865

1.2261
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Table of permissible exponents for k = 32

Process

o3

l\')moo

As
3.0006513
4.0107492
5.0460456
6.1127790

7.2031814
8.3160843

9.4480157
10.5989372

11.7694872
12.9585035

14.1659645
15.3924025

16.6372483

$1
0.00032563

0.00336671
0.00884787
0.01347074

0.01535571
0.01661114

0.01716982
0.01764754

0.01814158
0.01847574

0.01878922
0.01913448

0.01942050

?;

0.0070
0.0118
0.0145

0.0166
0.0117

0.0145
0.0091

0.0127

g:l bi

0.0236
0.0290
0.0321

0.0348
0.0477

0.0513
0.0641

0.0690

Table of permissible exponents for k = 34

Process
3,2
B1,4
4,2

Sejiey

Sy
e A i e
1 00 o 00 o O

Sy,

s,
NENBN®
©

o

Sy
=

As
3.0005147
4.0090083
5.0397401
6.1004200

7.1840767
8.2896184

9.4129882
10.5541305
11.7133896
12.8905163
14.0847742
15.2966345
16.5259780

$1
0.00025732

0.00283170
0.00770030
0.01223322

0.01418011
0.01548459

0.01600048
0.01643672
0.01686019
0.01721916
0.01748578
0.01778064
0.01805376

o

0.0054
0.0104
0.0131
0.0150
0.0101
0.0129
0.0154
0.0109

J

0.0209
0.0264
0.0295
0.0319
0.0436
0.0471
0.0504
0.0632

s

0.9802

1.0906
1.2034

1.2378

s

0.9376
1.0521
1.1577
1.2170
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Table of permissible exponents for k = 36

Process

o3

l\')moo

As
3.0004128
4.0076365
5.0346195
6.0901459

7.1679365
8.2670449

9.3828824
10.5154507

11.6648323
12.8314116
14.0140325
15.2130601
16.4286845

17.6606068

$1
0.00020635

0.00240826
0.00675866
0.01118271
0.01316287
0.01450637
0.01497972
0.01538430

0.01575000
0.01611772
0.01635130
0.01660506
0.01686286

0.01708916

?;

0.0040
0.0091
0.0118

0.0137
0.0086
0.0115
0.0137
0.0093

0.0120

g:l bi

0.0185
0.0241
0.0272
0.0294
0.0398
0.0435
0.0464
0.0581
0.0618

Table of permissible exponents for k = 38

Process

As
3.0003353
4.0065387
5.0304085
6.0814901

7.1541435
8.2475913

9.3566575
10.4816593
11.6223319
12.7795262
13.9517878
15.1394461
16.3428361
17.5615789

$1
0.00016763

0.00206802
0.00597725
0.01027884

0.01227563
0.01365028

0.01406869
0.01446221
0.01477912
0.01514737
0.01535244
0.01557562
0.01581504
0.01601671

?;

0.0029
0.0079
0.0108
0.0125
0.0072
0.0102
0.0123
0.0144
0.0105

2:1 bi

0.0166
0.0220
0.0253
0.0273
0.0366
0.0402
0.0429
0.0457
0.0571

s

0.8917

1.0180
1.1166
1.1986

1.2277

s

0.8484
0.9829

1.0800
1.1800
1.2100

77
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Table of permissible exponents for k = 40

Process

)\S
3.0002717
4.0055702
5.0266358
6.0730909
7.1411109
8.2285099
9.3316986

10.4498752
11.5828707
12.7314053
13.8944894
15.0720426
16.2643687
17.4713863
18.6931953

$1
0.00013584

0.00176633
0.00527374
0.00934078
0.01147649
0.01274245
0.01327785
0.01363320
0.01392605
0.01425870
0.01447244
0.01466715
0.01487677
0.01507158
0.01526705

?;

0.0069
0.0098
0.0115
0.0132
0.0091
0.0111
0.0130
0.0093
0.0056

10 P

0.0201
0.0235
0.0255
0.0274
0.0374
0.0399
0.0424
0.0531
0.0641

0.9509
1.0482
1.1421
1.1947
1.2358

Table of permissible exponents for k = 56

Process
B
B's
B3
By X T
B I ,’fo
B} X T
A2
By
Byl
By

As
3.0000641
4.0018248
5.0107720
6.0336021
7.0749443
8.1314920
9.2015653

10.2835673
11.3759867
12.4787878
13.5920033
14.7160440
15.8501204
16.9946507

$1
0.00003202

0.00058692
0.00223784
0.00457587
0.00692919
0.00816567
0.00890554
0.00932007
0.00951166
0.00967630
0.00982670
0.00999685
0.01009311
0.01021425

¢;

0.0041
0.0063
0.0076

0.0086
0.0095
0.0067
0.0040

221 sz ¢:

0.0134
0.0158
0.0173
0.0184
0.0195
0.0265 0.9447
0.0337 1.1211
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Table of permissible exponents for k = 60

Process

By}
By
By
B?fo
Bf,’fl
Bi’fe
A)?
By%s
Byl
B3
A13,2

As
3.0000471
4.0014347
5.0088563
6.0283226
7.0648348
8.1162996
9.1804196

10.2565541
11.3423160
12.4377875
13.5428594
14.6578046
15.7824957
16.9168390

$1
0.00002352

0.00046255
0.00185607
0.00390017
0.00611424
0.00742085
0.00813325
0.00863245
0.00880201
0.00895800
0.00908753
0.00922726
0.00934563
0.00944915

?;

0.0031
0.0053
0.0068

0.0077
0.0085
0.0059
0.0033

10 P

0.0117
0.0142
0.0157

0.0167
0.0177
0.0242 0.9129
0.0308 1.1104

Table of permissible exponents for k = 64

As
3.0000353
4.0011451
5.0073658
6.0241263
7.0565053
8.1035626

9.1626169
10.2336743

11.3136439
12.4026992
13.5007324

14.6078413
15.7242889

16.8494116
17.9835998
19.1266047

$1
0.00001762

0.00036996
0.00155562
0.00335705
0.00541830
0.00677718

0.00747861
0.00804055

0.00818830
0.00833355
0.00845312

0.00856921
0.00869521

0.00876473
0.00885697
0.00892866

?;

0.0022
0.0045
0.0060
0.0069

0.0076
0.0047

0.0059
0.0031
0.0004

b O
0.0103
0.0127
0.0143
0.0153
0.0162
0.0216 0.8471
0.0232 0.9414
0.0289 1.1088
0.0348 1.1504
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Table of permissible exponents for k = 68

Process
3.2
31,4
4,2
B1,6

As
3.0000267
4.0009181
5.0061304
6.0205621
7.0489837
8.0918863
9.1465073

10.2122415
11.2872180
12.3706630
13.4625637
14.5628858

15.6719470
16.7893310

17.9149233

19.0488059
20.1911221
21.3417807

$1
0.00001331

0.00029715
0.00130338
0.00288990
0.00475323
0.00617213
0.00690696

0.00742466
0.00766025

0.00778929
0.00790250
0.00800180
0.00811643
0.00819260
0.00825686
0.00832341
0.00839565
0.00845975

?;

0.0037
0.0053
0.0062
0.0069

0.0076
0.0051

0.0061

0.0069
0.0047
0.0024

g:l bi

0.0114
0.0130
0.0142
0.0149

0.0158
0.0212
0.0224
0.0234
0.0293
0.0352

s

0.9024
0.9791

1.0441
1.1259
1.1581
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Table of permissible exponents for k = 72

Process
3.2
31,4
4,2
B1,6

As
3.0000205
4.0007451
5.0051551
6.0176775
7.0427686
8.0820772
9.1327314

10.1937853
11.2643373
12.3428217
13.4292736
14.5236334

15.6261004
16.7366445

17.8548813

18.9808873
20.1147519
21.2564959

22.4061171
23.5636041

$1
0.00001021

0.00024154
0.00110272
0.00250706
0.00419421
0.00565004
0.00639741

0.00688532
0.00719463
0.00731063
0.00741620
0.00750632

0.00760346
0.00769062

0.00774646

0.00780459
0.00786555
0.00792520

0.00798257
0.00803757

?;

0.0031
0.0046
0.0056

0.0063
0.0070
0.0044

0.0054
0.0062
0.0070
0.0048
0.0024
0.0006

g:l bi

0.0102
0.0119
0.0131
0.0138
0.0146
0.0195
0.0207
0.0216
0.0226
0.0280
0.0334
0.0394

s

0.8628
0.9486

1.0116
1.0785
1.1276

1.1564
1.1688

81
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Table of permissible exponents for k = 76

Process
3.2
31,4
4,2
B1,6

As
3.0000159
4.0006104
5.0043590
6.0152939
7.0375713
8.0734591
9.1206671

10.1776325
11.2442251

12.3182827
13.3998892
14.4889692
15.5856100
16.6900569
17.8017421
18.9207482
20.0471373
21.1809902
22.3222235
23.4709154

24.6270386
25.7906446

$1
0.00000793

0.00019818
0.00093729
0.00218890
0.00372240
0.00515450
0.00595570

0.00641551
0.00677969

0.00688538
0.00698584
0.00706978
0.00715274
0.00724602
0.00729495
0.00734685
0.00740016
0.00745580
0.00750483
0.00755634

0.00760498
0.00765482

?;

0.0024
0.0040
0.0051
0.0058

0.0064
0.0037

0.0048
0.0056
0.0063
0.0070
0.0050
0.0026

0.0038
0.0018

g:l bi

0.0092
0.0109
0.0121
0.0129

0.0135
0.0179
0.0192
0.0201
0.0209
0.0219
0.0271

0.0319

0.0335
0.0389

s

0.8224
0.9160
0.9828
1.0454
1.1119
1.1305
1.1551

1.1634
1.1744
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Table of permissible exponents for k = 80

s Process As 01 o} 521 oi O

3 B 3.0000125  0.00000624

4 By 4.0005051 0.00016419

5 By 5.0037183 0.00080341

6 Byi,  6.0133258 0.00192294

7 B{i,  7.0332148 0.00332221

8 Byi,  8.0661378 0.00472571

9 ByY, 91101284 0.00554468

10 A% 10.1634946 0.00600304

11 By  11.2265639 0.00641176 0.0019 0.0083

12 By%:  12.2966473 0.00650521 0.0035 0.0100

13 By37  13.3738933 0.00660034 0.0046 0.0112

14 By§7  14.4582437 0.00668064 0.0053 0.0120

15 A% 15.5496954 0.00675332 0.0059 0.0126

16 A% 16.6484502 0.00683410 0.0064 0.0133

17 By57  17.7542883 0.00689430 0.0042 0.0178 0.8823

18 A 18.8670322 0.00693992 0.0050 0.0187 0.9570

19 A% 19.9867390 0.00698693 0.0057 0.0195 1.0160

20 A7 21.1134792 0.00703595 0.0063 0.0203 1.0785

21 Bi:  22.2472590 0.00708335 0.0044 0.0252 1.1204

22 B75T  23.3880855 0.00712947 0.0020 0.0297 1.1467

23 AZ*  24.5359375 0.00717314 0.0032 0.0312 1.1545

24 A% 256908623 0.00721788 0.0013 0.0363 1.1651
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