
FURTHER IMPROVEMENTS IN WARING’S PROBLEM, IV:

HIGHER POWERS

R. C. Vaughan1 and T. D. Wooley2

1. Introduction

As usual we define G(k) to be the least number s such that every sufficiently large
natural number is the sum of, at most, s kth powers of natural numbers. In this
paper we continue the program, initiated in Vaughan and Wooley [18] and extended
in [16] and [17], of comprehensively developing the repeated efficient differencing
process of Wooley [19]. Following Vaughan [13], our methods depend on upper
bounds for the number, S(k)

s (P,R), of solutions of the diophantine equations

xk1 + · · ·+ xks = yk1 + · · ·+ yks , (1.1)

with xi, yi ∈ A(P,R), where throughout we write

A(P,R) = {n ∈ [1, P ] ∩ Z : p prime, p|n implies p6R}.

In Vaughan and Wooley [18] we established bounds for G(k) when 56k69, and
reported on preliminary bounds for G(k) when 106k615. We now extend the latter
calculations to bound G(k) when 96k620, exploiting subsequent developments and
making some further technical refinements.

Theorem 1.1. When 96k620, one has G(k)6H(k), where H(k) is given in the
following table.

k 9 10 11 12 13 14 15 16 17 18 19 20
H(k) 50 59 67 76 84 92 100 109 117 125 134 142
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For comparison, Wooley [19, 22] has obtained the bounds G(k)68k − 18 for
106k617, and G(18)6127, G(19)6135, G(20)6144. Meanwhile, for smaller expo-
nents one has the bounds

G(5)617, G(6)624, G(7)633, G(8)642, G(9)651,

by collecting together the conclusions of Vaughan and Wooley [16, 17, 18]. Indeed,
we reported in [18] that preliminary calculations indicated the validity of the bounds

G(10)659, G(11)667, G(12)676, G(13)684, G(14)692, G(15)6100,

though we gave no details of these calculations. It is worth remarking that a number
of authors have obtained estimates weaker than those established (or described) in
Vaughan and Wooley [18] and Wooley [22] (see especially [8, 9, 10, 11]), following
the publication of the papers [18] and [22]. However, the only improvement on the
bounds contained in [18] and [22] known to the authors is a result of Meng [11],
namely that G(20)6143, and this is now superseded by Theorem 1.1.

It transpires that our estimates for the mean values S(k)
s (P,R) required in the

proof of Theorem 1.1 are also of use in both localised and unlocalised estimates for
the fractional part of αnk.

Theorem 1.2. Let α ∈ R and ε > 0. Then when 76k620, there is a real number
N(ε, k) with the property that whenever N>N(ε, k), one has

min
16n6N

‖αnk‖6Nε−σ(k),

where σ(k)−1 = S(k), and S(k) is given by the following table.

k 7 8 9 10 11 12 13
S(k) 57.23 69.66 82.08 94.62 107.27 119.78 132.34

k 14 15 16 17 18 19 20
S(k) 145.02 157.76 170.52 183.32 196.24 209.17 222.16

For comparison, Baker [1] shows that σ(k)−1 = 2k−1 is permissible in Theorem
1.2 for each k (following Danicic [5]), and describes how Vinogradov’s methods yield
sharper estimates for larger k. We note that Theorem 1.2 provides improvements
on these exponents whenever k>7. When k is large, meanwhile, the conclusion of
Theorem 1.2 of Wooley [22] shows that σ(k)−1 = k(log k +O(log log k)) is permis-
sible.

Theorem 1.3. Let α ∈ R and ε > 0. Then there are infinitely many natural
numbers n with

‖αnk‖6nε−τ(k),
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where τ(k)−1 = T (k), and T (k) is given by the following table.

k 8 9 10 11 12 13 14
T (k) 57.72 67.25 76.71 86.18 95.46 104.77 114.02

k 15 16 17 18 19 20
T (k) 123.24 132.46 141.64 150.82 159.95 169.06

The conclusion of Theorem 1.3 may be compared with Corollary 2 to Theorem
1.1 of Wooley [20], which shows that the exponent τ(k)−1 = 9.028k is permissible for
every k (improving on earlier work of Heath-Brown [7]). For smaller k, moreover,
Heath-Brown [7] has shown that τ(k)−1 = 3 · 2k−3 is permissible for k>6. The
conclusion of Theorem 1.3 improves on the latter for k>8. For k = 7, meanwhile,
our methods yield τ(7)−1 = 48.13, which narrowly fails to surpass Heath-Brown’s
exponent τ(7)−1 = 48. As noted by Heath-Brown [7], when α is algebraic, the
method used to establish Theorem 1.3 shows, via an application of Roth’s theorem,
that the conclusion of Theorem 1.2 holds with σ(k) replaced by τ(k).

Broadly speaking, our proof of Theorem 1.1 follows the pattern of Vaughan and
Wooley [18]. We discuss the salient features of the underlying methods in §2 of
this paper. The calculations involved in the proof are substantial, and thus one of
the major challenges of this paper is the development of a strategy for handling
the inherent complexity of our methods. There are three significant improvements
on the methods of [18] of which we make use. Firstly, we employ the methods of
Vaughan and Wooley [16], together with some refinements described in §5, in order
to better handle the mean values of exponential sums over difference polynomials
on the major arcs of our Hardy-Littlewood dissection. Such methods significantly
enhance our estimates for mean values towards the end of the iteration process.
Secondly, we make use of the new estimates for smooth Weyl sums contained in
Wooley [22]. For larger k, these new estimates alone save several variables in the
representations underlying our bounds for G(k). Finally, in §3 of this paper, we
establish new estimates for mean values of 2l-th power moments of exponential
sums over difference polynomials, establishing an important technical refinement of
the corresponding estimates contained in [18]. Although these latter estimates are
of significance only in the initial segment of the iteration process, they nonetheless
lead to improvements in mean value estimates significant to the estimates recorded
in Theorems 1.2 and 1.3. We remark that the highly technical estimates described
in Wooley [21] offer the prospect of further refinements in the mean value estimates
described herein. However, it would seem that for larger k, such improvements are
not significant so far as bounds for G(k) are concerned.

2. Preliminary observations

In order to put the work of the present paper in its proper setting, we first recall
some of the notation and discussion of [18]. Throughout, k will denote an arbitrary
integer exceeding 2, the letter s will denote a positive integer, and ε and η will
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denote sufficiently small positive numbers. We take P to be a large real number
depending at most on k, s, ε and η. We use � and � to denote Vinogradov’s well-
known notation, implicit constants depending at most on k, s, ε and η. We make
frequent use of vector notation for brevity. For example, (c1, . . . , ct) is abbreviated
to c. Also, we write e(α) for e2πiα, and [x] for the greatest integer not exceeding x.

In an effort to simplify our analysis, we adopt the following convention concerning
the numbers ε and R. Whenever ε or R appear in a statement, either implicitly or
explicitly, we assert that for each ε > 0, there exists a positive number η0(ε, s, k)
such that the statement holds whenever R = P η, with 0 < η6η0(ε, s, k). Note that
the “value” of ε, and η0, may change from statement to statement, and hence also
the dependency of implicit constants on ε and η. Notice that since our iterative
methods will involve only a finite number of statements (depending at most on
k, s and ε), there is no danger of losing control of implicit constants through the
successive changes implicit in our arguments. Finally, we use the symbol ≈ to
indicate that constants and powers of R and P ε are to be ignored.

For each s ∈ N we take φi = φi,s (i = 1, . . . , k) to be real numbers, with
06φi61/k, to be chosen later. We then take

Pj = 2jP, Mj = Pφj , Hj = PjM
−k
j , Qj = Pj(M1 . . .Mj)−1 (06j6k),

and here, and throughout, the empty product is taken to be unity. We also write

H̃j =
j∏
i=1

Hi and M̃j =
j∏
i=1

MiR.

We define the modified forward difference operator, ∆∗
1, by

∆∗
1 (f(x);h;m) = m−k (

f(x+ hmk)− f(x)
)
,

and define ∆∗
j recursively by

∆∗
j+1 (f(x);h1, . . . , hj+1; m1, . . . ,mj+1)

= ∆∗
1

(
∆∗
j (f(x);h1, . . . , hj ;m1, . . . ,mj) ;hj+1;mj+1

)
.

We also adopt the convention that ∆∗
0 (f(x);h;m) = f(x).

For 06j6k let

Ψj = Ψj(z;h1, . . . , hj ;m1, . . . ,mj) = ∆∗
j (f(z); 2h1, . . . , 2hj ;m1, . . . ,mj) ,

where f(z) = (z − h1m
k
1 − · · · − hjm

k
j )
k.

We write

fj(α) =
∑

x∈A(Qj ,R)

e(αxk), f+
j (α) =

∑
x∈A(Qj ,R)

x> 1
2QjR

−j

e(αxk)
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and
gj(α) =

∑
1
2QjR−j<x6Qj

e(αxk),

and write also
Fj(α) =

∑
z,h,m

e (αΨj(z;h;m)) ,

where the summation is over z,h,m with

16z6Pj , Mi < mi6MiR, mi ∈ A(P,R), 16hi62j−iHi, (2.1)

for 16i6j. We define S(k)
s (P,R) as in the introduction. Suppose that the real

numbers λ(k)
s (16s <∞) have the property that

S(k)
s (P,R) � Pλ

(k)
s +ε.

Then we say that the λ(k)
s are permissible exponents. Such numbers certainly exist,

since we may trivially take λ(k)
s = 2s. Then for each s, we define the quantity ∆(k)

s

by
λ(k)
s = 2s− k + ∆(k)

s .

When λ
(k)
s is a permissible exponent, we say that ∆(k)

s is an admissible exponent.
When no confusion is possible, we suppress the superscript k.

The efficient differencing process which underlies our arguments is implicit in
the following lemmata.

Lemma 2.1. We have∫ 1

0

∣∣F0(α)2f0(α)2s
∣∣ dα� P εM2s−1

1

(
PM1Q

λs
1 +

∫ 1

0

∣∣F1(α)f1(α)2s
∣∣ dα)

. (2.2)

Further, the inequality (2.2) holds also when fi(α) is replaced by f+
i (α) for i = 0, 1.

Proof. The inequality (2.2) is immediate from Lemma 2.1 of [18]. Meanwhile, a
consideration of the intermediate underlying diophantine equations reveals that the
replacement of the exponential sums fi(α) by f+

i (α) (i = 0, 1) is easily accomodated
within the argument of the proofs of Lemmata 2.2 and 2.3 of Wooley [19], and thus
the second conclusion of the lemma also follows with minimal effort.

Following [18], we abbreviate an inequality of the form (2.2) symbolically by

F 2
0 f

2s
0 7−→ F1f

2s
1 ,

with a similar convention when fi is replaced by f+
i (i = 0, 1).



6 R. C. VAUGHAN AND T. D. WOOLEY

Lemma 2.2. Whenever 0 < t < 2s and 16j6k − 1, we have∫ 1

0

∣∣Fj(α)fj(α)2s
∣∣ dα� P ε(Qλt

j )1/2(H̃jM̃jM
4s−2t−1
j+1 Tj+1)1/2, (2.3)

where

Tj+1 = PH̃jM̃j+1Q
λ2s−t

j+1 +
∫ 1

0

∣∣Fj+1(α)fj+1(α)4s−2t
∣∣ dα. (2.4)

Further, the inequality (2.3) holds also when fi(α) is replaced by f+
i (α) for i =

j, j + 1.

Proof. The first conclusion of the lemma is immediate from Lemma 2.2 of [18], on
correcting a typographic error in the statement of the latter. The second conclusion
of the lemma follows as in the proof of Lemma 2.2 of [18], on making use of Lemmata
2.3 and 3.1 of Wooley [19], the replacement of the exponential sum fi(α) by f+

i (α)
(i = j, j + 1) leading to minor cosmetic changes only.

Lemma 2.3. Whenever 0 < t < 2s and 16j6k − 1, we have∫ 1

0

∣∣Fj(α)f+
j (α)2s

∣∣ dα� P ε(Qλt
j )1/2(H̃jM̃jM

4s−2t−1
j+1 T̃j+1)1/2, (2.5)

where

T̃j+1 = PH̃jM̃j+1Q
λ2s−t

j+1 +
∫ 1

0

∣∣Fj+1(α)gj+1(α)2fj+1(α)4s−2t−2
∣∣ dα. (2.6)

Proof. The proof is based on the use of Lemmata 2.3 and 3.1 of Wooley [19], in
a manner similar to the proof of Lemma 2.2 of Vaughan and Wooley [18]. By
applying Schwarz’s inequality as in the proof of Lemma 2.2 of [18], we find that∫ 1

0

|Fj(α)f+
j (α)2s|dα�

(∫ 1

0

|f+
j (α)|2tdα

)1/2(∫ 1

0

|Fj(α)2f+
j (α)4s−2t|dα

)1/2

.

(2.7)
But on considering the underlying diophantine equations,∫ 1

0

|f+
j (α)|2tdα6

∫ 1

0

|fj(α)|2tdα� Qλt+ε
j , (2.8)

and by the argument of the proof of Lemmata 2.3 and 3.1 of [19], again noting that
the replacement of fi(α) by f+

i (α) is easily accomodated, one finds that∫ 1

0

|Fj(α)2f+
j (α)4s−2t|dα� P εH̃jM̃jM

4s−2t−1
j+1

(
PH̃jM̃j+1Q

λ2s−t

j+1 + T ∗j+1

)
,

(2.9)
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where T ∗j+1 denotes the number of solutions of the diophantine equation

Ψj+1(z;h;m) +
2s−t∑
i=1

(xk2i−1 − xk2i) = 0, (2.10)

with z,h,m satisfying (2.1) for 16i6j + 1, and with xi ∈ A(Qj+1, R) and xi >
1
2Qj+1R

−j−1 for 16i64s− 2t. Here we note that our summation conditions differ
from those of (3.3) of [19] only by virtue of the notation defined above, and the
latter condition on the xi.

Let T+
j+1 denote the number of solutions of the diophantine equation (2.10) with

z, hi,mi satisfying (2.1) for 16i6j + 1, and with

1
2Qj+1R

−j−1 < x1, x26Qj+1 and xi ∈ A(Qj+1, R) (36i64s− 2t).

Then it is evident that T ∗j+16T
+
j+1, and moreover, on considering the underlying

diophantine equations,

T+
j+1 =

∫ 1

0

Fj+1(α)|gj+1(α)2fj+1(α)4s−2t−2|dα6T̃j+1.

The conclusion of the lemma therefore follows by combining (2.7)-(2.9).

We abbreviate inequalities of the form (2.3) and (2.5) symbolically by

Fjf
2s
j −→ Fj+1f

4s−2t
j+1y

f2t
j

and
Fjf

+
j

2s −→ Fj+1g
2
j+1f

4s−2t−2
j+1y

f2t
j

respectively.
The integrals on the right hand side of (2.2), (2.4) and (2.6) may be estimated

in two ways other than simply repeating the efficient differencing process.
Firstly, we may apply Hölder’s inequality in the form∫ 1

0

∣∣Fj(α)fj(α)2s
∣∣ dα� Ial I

b
l+1U

c
vU

d
w (2.11)

where

Im =
∫ 1

0

|Fj(α)|2
m

dα (m = l, l + 1)
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and

Uu =
∫ 1

0

|fj(α)|2u dα (u = v, w),

in which l, v and w are non-negative integers, and a, b, c, d are non-negative real
numbers with

a+ b+ c+ d = 1, 2la+ 2l+1b = 1, vc+ wd = s.

The 2m-th power mean values of Fj may be estimated in terms of the number of
solutions of certain diophantine equations, as we describe below. Also, we have
Uv � Qλv+ε

j and Uw � Qλw+ε
j . We abbreviate an inequality of the shape (2.11)

symbolically by
Fjf

2s
j =⇒ (F 2l

j )a(F 2l+1

j )b(f2v
j )c(f2w

j )d.

We discuss such inequalities further in §4 below.
Secondly, we may apply the Hardy-Littlewood method along the lines of Vaughan

and Wooley [16]. We then abbreviate the resulting inequality symbolically in the
form

Fjf
2s
j =⇒ (Fj)(f2s

j )

or
Fjg

2
j f

2s−2
j =⇒ (Fj)(g2

j f
2s−2
j ).

We discuss the material from [16] required in this paper in §5 below.
By considering the underlying diophantine equations, we have

Ss+1(P,R)6
∫ 1

0

∣∣F0(α)2f0(α)2s
∣∣ dα.

Also, on writing

H(α;Q) =
∑

16x6Q

e(αxk) and h(α;Q) =
∑

x∈A(Q,R)
x>Q/2

e(αxk),

it follows from a consideration of the underlying diophantine equations and Hölder’s
inequality that

Ss+1(P,R)6
∫ 1

0

∣∣∣ ∞∑
i=0

2i6
√
P

h(α; 2−iP ) +H(α;
√
P )

∣∣∣2s+2

dα

� P s+1 + (logP )2s+2 max
06i<∞
2i6

√
P

∫ 1

0

|h(α; 2−iP )|2s+2dα

� P s+1 + P ε max
06i<∞
2i6

√
P

∫ 1

0

|H(α; 2−iP )2h(α; 2−iP )2s|dα.
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Since the last integral has the shape∫ 1

0

|F0(α)2f+
0 (α)2s|dα,

it follows in either case that we may use a sequence of connected inequalities (in the
obvious sense) to bound Ss(Q,R) in terms of St(Q′, R) (t = 1, 2, . . . ). By optimising
parameters one obtains in this way a permissible exponent λs+1 for which

Ss+1(P,R) � Pλs+1+ε.

The use of such inequalities within an iterative process is discussed in detail in §2 of
[18]. While we avoid detailed discussion of such issues, we will indicate the manner
in which optimal parameters are to be found. Notice that whenever the methods
of this paper establish that λs+1 is a permissible exponent, then on considering the
underlying diophantine equations, it is apparent that they also establish the upper
bound ∫ 1

0

|F0(α)2f+
0 (α)2s|dα� Pλs+1+ε, (2.12)

since our starting point in deriving such a permissible exponent is an application of
Lemma 2.1. Either the mean value on the left hand side of (2.12) occurs explicitly
in the latter application, or else a similar expression in which f+

0 is replaced by
f0, and of course a consideration of the underlying diophantine equations readily
confirms that this last mean value majorises the former.

Finally, having established estimates for the mean values Ss(P,R), one must still
employ these bounds within the proofs of Theorems 1.1, 1.2 and 1.3. We discuss the
latter details in §§6 and 7. The calculation of the exponents λ(k)

s , and subsequent
computation of G(k), τ(k), σ(k) we defer to §§8 to 23.

3. Estimates for the number of solutions of auxiliary equations

In this section we explore some technical refinements of the methods of §3 of [18]
concerning the moments of the exponential sum Fj(α). Before proceeding further
we require some notation. Let R(s)

j (P ;φ) denote the number of solutions of the
diophantine equation

s∑
i=1

Ψj

(
zi;h(i);m(i)

)
=

s∑
i=1

Ψj

(
wi;g(i);n(i)

)
, (3.1)

with
16zi, wi6Pj , 16h(i)

t , g
(i)
t 62j−tHt, (3.2)

Mt < m
(i)
t , n

(i)
t 6MtR, m

(i)
t , n

(i)
t ∈ A(P,R), (3.3)
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for 16t6j and 16i6s. Also, we put J =
[
1
2 (k − j)

]
, and define Kj(P ;φ) to be the

number of solutions of the system of diophantine equations

j∑
i=1

h2r
i (m2rk

i − n2rk
i ) = 0 (16r6J), (3.4)

with h, m and n in the ranges defined by (3.2) and (3.3).
It transpires that the estimates for R(s)

j = R
(s)
j (P ;φ) that are presently attain-

able are of interest only when s is a small power of 2. Moreover, one may bound
R

(2l)
j in terms of R(2l−1)

j and R(1)
j+l as follows.

Lemma 3.1. When 16l6k − 2 and 16j6k − l − 1, one has

R
(2l)
j (P ;φ1, . . . , φj) �P 2l−1(H̃jM̃j)2

l

R
(2l−1)
j (P ;φ1, . . . , φj)

+ P 2l+1−2l−2(H̃jM̃j)2
l+1−2R

(1)
j+l(P ;φ1, . . . , φj , 0, . . . , 0).

Proof. This is a natural development of the proof of Lemma 3.1 of [18]. On con-
sidering the underlying diophantine equations, it follows from (3.1) that

R
(2l)
j (P ;φ) =

∫ 1

0

|Fj(α)|2
l+1
dα.

Write
Ψj,l(z;h;m;u) = ∆∗

l (Ψj(z;h;m);u; 1, . . . , 1),

in which u = (u1, . . . , ul). Then by applying standard Weyl differencing (see, for
example, Lemma 2.3 of Vaughan [15]), an application of Hölder’s inequality reveals
that

|Fj(α)|2
l

� P 2l−1(H̃jM̃j)2
l

+ P 2l−l−1(H̃jM̃j)2
l−1|G(α)|,

where

G(α) =
∑
h,m

∑
16u16Pj

· · ·
∑

16ul6Pj

∑
16z6Pj−u1−···−ul

z∈I(u)

e(αΨj,l(z;h;m;u)),

and here I(u) denotes an interval depending only on u, and the summation over h
and m is over the ranges given in (3.2) and (3.3). Thus we deduce that

R
(2l)
j (P ;φ) �P 2l−1(H̃jM̃j)2

l

∫ 1

0

|Fj(α)|2
l

dα

+ P 2l−l−1(H̃jM̃j)2
l−1

∫ 1

0

|G(α)Fj(α)2
l

|dα.
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An application of Schwarz’s inequality, combined with a consideration of the un-
derlying diophantine equations, therefore reveals that

R
(2l)
j (P ;φ) �P 2l−1(H̃jM̃j)2

l

R
(2l−1)
j (P ;φ)

+ P 2l−l−1(H̃jM̃j)2
l−1

(
R

(2l)
j (P ;φ)S

)1/2

,

where S denotes the number of solutions of the equation

Ψj,l(z;h;m;u) = Ψj,l(w;g;n;v),

with the variables h,g,m,n in the ranges defined by (3.2) and (3.3), and with

16ui, vi6Pj (16i6l),

16z6Pj − u1 − · · · − ul, 16w6Pj − v1 − · · · − vl.

But we have

2k∆∗
l (Ψj(z;h;m);u; 1, . . . , 1)

= ∆∗
j+l((2z − 2h1m

k
1 − · · · − 2hjmk

j )
k; 4h, 2u;m, 1, . . . , 1)

= Ψj+l(2z + u1 + · · ·+ ul; 2h,u;m, 1, . . . , 1).

The desired conclusion therefore follows on noting that

2z + u1 + · · ·+ ul < 2Pj6Pj+l.

The methods of §3 of [18] provide a bound of the shape

R
(1)
j (P ;φ) � P 1+εKj(P ;φ)

when j = 1, and for 16j6k−2 in circumstances in which k−j is odd, and also when
k − j = 2 or 4, but in all other circumstances the bounds obtained are somewhat
unsatisfactory. Our primary aim in this section is to treat as many of the cases in
which k − j is even as is practicable. We handle the latter cases by making use of
an estimate for the number of integral points on certain affine plane curves due to
Bombieri and Pila [2] (this idea was mentioned to us in a conversation by Professor
E. Bombieri in early 1991).

Lemma 3.2. Let C be the curve defined by the equation F (x, y) = 0, where
F (x, y) ∈ R[x, y] is an absolutely irreducible polynomial of degree d>2. Also,
let N> exp(d6). Then the number of integral points on C, and inside a square
[0, N ]× [0, N ], does not exceed

N1/d exp(12(d logN log logN)1/2).
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Proof. This is Theorem 5 of Bombieri and Pila [2].

Before announcing the new estimate at the heart of this discussion, we recall
from §3 of [18] that for each j and k one has

Ψj(z;h;m) = k!2jh1 . . . hj
∑
u>0

∑
v1>0

· · ·
∑
vj>0

zu(h1m
k
1)2v1 . . . (hjmk

j )
2vj

u!(2v1 + 1)! . . . (2vj + 1)!
,

where the summation is subject to the condition u + 2v1 + · · · + 2vj = k − j.
Consequently, when k − j is even, one has that

Ψj(z;h;m) = h1 . . . hj

J∑
r=0

cr(h1m
k
1 , . . . , hjm

k
j )z

2r, (3.5)

where the cr(ξ1, . . . , ξj) ∈ Z[ξ] are polynomials with positive coefficients which are
symmetric in ξ21 , . . . , ξ

2
j of degree J − r (06r6J).

Lemma 3.3. Suppose that 16j6k − 6 and k − j is even. Then

R
(1)
j (P ;φ) � P 1+εKj(P ;φ) + P 2/3+εH̃jM̃

2
j .

Proof. Observe first that in view of (3.5), the polynomial Ψj(z;h;m) is divisible
by h1 . . . hj . The argument of the proof of Lemma 3.2 of [18] therefore shows that

R
(1)
j (P ;φ) � P εR∗j (P ;φ), (3.6)

where now we write R∗j (P ;φ) for the number of solutions of the equation

Ψj(z;h;m) = Ψj(w;h;n), (3.7)

with z, w,h,m,n satisfying

16z, w6Pj , 16hi62j−iHi, mi, ni ∈ A(P,R) ∩ (Mi,MiR] (16i6j). (3.8)

We divide our argument into cases. Let R0 denote the number of solutions of the
equation (3.7) counted by R∗j (P ;φ) in which

c0(h1m
k
1 , . . . , hjm

k
j ) = c0(h1n

k
1 , . . . , hjn

k
j ), (3.9)

and let R1 denote the corresponding number of solutions in which (3.9) does not
hold. Then one has

R∗j (P ;φ) = R0 +R1. (3.10)

Observe first that if z, w,h,m,n is any solution of (3.7) counted by R0, then it
follows from (3.5) and (3.9) that

z2
J∑
r=1

cr(h1m
k
1 , . . . , hjm

k
j )z

2r−2 = w2
J∑
r=1

cr(h1n
k
1 , . . . , hjn

k
j )w

2r−2. (3.11)
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When t and x are positive integers with 16x6Pj , and h satisfies (3.8), denote by
r(n;x, t;h) the number of solutions of the simultaneous diophantine equations

x2
J∑
r=1

cr(h1m
k
1 , . . . , hjm

k
j )x

2r−2 = n,

c0(h1m
k
1 , . . . , hjm

k
j ) = t,

with m satisfying (3.8). Then it follows from (3.11) via Cauchy’s inequality and an
elementary estimate for the divisor function that

R0 =
∞∑
n=1

∞∑
t=1

∑
h

( ∑
x2|n

16x6Pj

r(n;x, t;h)
)2

� P ε
∞∑
n=1

∞∑
t=1

∑
h

∑
x2|n

16x6Pj

r(n;x, t;h)2,

where the summation over h is subject to (3.8). Thus it follows that

R0 � P εR∗0, (3.12)

whereR∗0 denotes the number of solutions of the simultaneous diophantine equations

J∑
r=1

(
cr(h1m

k
1 , . . . , hjm

k
j )− cr(h1n

k
1 , . . . , hjn

k
j )

)
z2r−2 = 0, (3.13)

c0(h1m
k
1 , . . . , hjm

k
j )− c0(h1n

k
1 , . . . , hjn

k
j ) = 0, (3.14)

with z,h,m,n satisfying (3.8).
Consider next the solutions of the system (3.13), (3.14) in which

cr(h1m
k
1 , . . . , hjm

k
j ) 6= cr(h1n

k
1 , . . . , hjn

k
j )

for some r with 16r6J . We may assign h, m and n in O(H̃jM̃
2
j ) ways. Fixing

any one such choice, it follows that z is determined by the non-trivial polynomial
equation (3.13). Then there are O(1) possible choices for z, and consequently the
total number of solutions counted by R∗0 of this type is O(H̃jM̃

2
j ). The remaining

solutions z,h,m,n of the system (3.13), (3.14) counted by R∗0 satisfy the system

cr(h1m
k
1 , . . . , hjm

k
j ) = cr(h1n

k
1 , . . . , hjn

k
j ) (06r6J), (3.15)

with the variable z unconstrained. On recalling that the polynomials cr(ξ) have
positive coefficients and are symmetric in ξ21 , . . . , ξ

2
j of degree J − r (06r6J), we
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find from (3.15) that the equations (3.4) are satisfied. Consequently, the number of
possible choices for h,m,n is at most Kj(P ;φ). We may therefore conclude that

R∗0 � H̃jM̃
2
j + PKj(P ;φ). (3.16)

On noting that the diagonal solutions of (3.4) alone yield � H̃jM̃j solutions, and
recalling that our hypotheses on φ dictate that M̃j � P , we find from (3.12) and
(3.16) that

R0 � P 1+εKj(P ;φ). (3.17)

Let h,m,n be any one of the O(H̃jM̃
2
j ) possible choices satisfying (3.8) for which

the equation (3.9) does not hold. Write

F (x, y) =
J∑
r=0

(
cr(h1m

k
1 , . . . , hjm

k
j )x

r − cr(h1n
k
1 , . . . , hjn

k
j )y

r
)
.

Then it follows that for this fixed choice of h,m,n, the choices of z and w to be
counted by R1 satisfy the equation

F (z2, w2) = 0, (3.18)

with 16z, w6Pj , and moreover the constant term in (3.18) is non-zero. Suppose
first that the polynomial F (x, y) is absolutely irreducible. Then it follows from
Lemma 3.2 that the number of possible choices for x and y with 16x, y6P 2

j , sat-
isfying the equation F (x, y) = 0, is O(P 2/J+ε). Hence the number of solutions of
the equation (3.18) with 16z, w6Pj is similarly O(P 2/J+ε).

If, on the other hand, the polynomial F (x, y) is not absolutely irreducible, then
one may write F (x, y) as a product of absolutely irreducible factors, say

F (x, y) =
l∏
i=1

gi(x, y)
m∏
e=1

he(x, y), (3.19)

where l +m>2, and where gi(x, y) ∈ R[x, y] (16i6l), and

he(x, y) = ue(x, y) + ve(x, y)
√
−1 (16e6m),

with ue, ve ∈ R[x, y]. We may suppose, moreover, that for each e the polynomials
ue and ve have no non-trivial polynomial common divisor over C[x, y]. It therefore
follows from Bezout’s Theorem that the number of solutions of the simultaneous
equations ue(x, y) = ve(x, y) = 0 is bounded above by J2. By considering real and
imaginary components, therefore, the number of integral solutions of the equation
he(x, y) = 0 is also bounded above by J2. If the degree of gi(x, y) exceeds 2 for
any i, then the absolute irreducibility of gi(x, y) ensures, via Lemma 3.2, that the
number of integral solutions of the equation gi(x, y) = 0, with (x, y) ∈ [0, P 2

j ]2 ∩
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Z2, is O(P 2/3+ε). Consequently, it follows from the conclusion of the previous
paragraph together with (3.19) that the number of solutions of the equation (3.18)
with 16z, w6P is O(P 2/3+ε), except possibly when F (x, y) factorises in the form
(3.19) with one at least of the gi having degree one or two.

Suppose then that for some i with 16i6l, the polynomial gi(x, y) is quadratic
or linear. If gi(x, y) is not some constant multiple of a Q-rational polynomial, then
since gi(x, y) is necessarily a constant multiple of a polynomial with algebraic coef-
ficients, we deduce that the number of integral solutions of the equation gi(x, y) = 0
is at most O(1). For we may remove the constant factor and consider components
with respect to some basis for the field extension containing the coefficients of
gi(x, y). Then since gi(x, y) is not a constant multiple of a Q-rational polynomial,
it follows that the integral zeros of the polynomial gi(x, y) necessarily satisfy at
least two linearly independent Q-rational equations, whence the desired conclusion
follows from Bezout’s Theorem.

Suppose next that for some i with 16i6l, the polynomial gi(x, y) is quadratic
or linear, and has integral coefficients, as we may. Observe that the homogeneous
part of F (x, y) of maximal degree has the shape α(xJ − yJ), for a certain positive
integer α. Thus any quadratic factor of F (x, y) must have homogeneous part of
the shape α1φ(x, y), where α1 is rational and φ(x, y) is a divisor of xJ − yJ with
rational coefficients. By cyclotomy, the only possibilities for φ(x, y) are therefore
x2± y2 and x2± xy+ y2. Further, similarly, any linear factor of F (x, y) must have
homogeneous part of the shape α2(x ± y), where α2 is a rational number. In the
latter case one has that gi(x, y) has the shape a(x± y) + c, for a certain non-zero
integer a, and an integer c. Moreover, since the constant term in (3.18) is non-zero,
one has c 6= 0. But then the number of solutions z, w of the equation (3.18), with
16z, w6Pj , which arise from the vanishing of the factor gi, is bounded above by
the number of solutions of the equation

a(z2 ± w2) + c = 0, (3.20)

with 16z, w6Pj . But standard estimates for the number of solutions of such qua-
dratic equations (see, for example, Estermann [6] or Lemma 3.5 of [18]) reveal that
the number of solutions of the equation (3.20) counted by R1 is at most O(P ε).
If, on the other hand, the polynomial gi(x, y) is in fact a quadratic polynomial
with rational coefficients, then in view of our earlier observation we may make a
non-singular rational change of variables, x = u+C1, y = v+C2, so that the poly-
nomial gi(x, y) takes the shape aφ(u, v) + c with a and c integers, and with φ(u, v)
as above. The absolute irreducibility of gi(x, y), moreover, ensures that ac 6= 0.
But then again the theory of binary quadratic equations ensures that the number
of solutions of the equation gi(z2, w2) = 0, with 16z, w6Pj , counted by R1 is once
more at most O(P ε).

Combining the conclusions of the previous four paragraphs, we find that for every
fixed choice of h, m, n satisfying (3.8) for which the equation (3.9) does not hold,
the number of possible choices for z and w satisfying (3.7) is at most O(P 2/3+ε).
Consequently,

R1 � P 2/3+εH̃jM̃
2
j . (3.21)
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We therefore conclude from (3.6), (3.10), (3.17) and (3.21) that

R
(1)
j (P ;φ) � P 1+εKj(P ;φ) + P 2/3+εH̃jM̃

2
j ,

whence the lemma follows immediately.

On combining the conclusion of Lemma 3.3 with Lemma 3.1, we are able to
obtain mean value estimates for 2l-th moments of Fj(α) which, in many circum-
stances, are superior to those available hitherto. We summarise such new estimates,
and recall those previously known, in the following theorem.

Theorem 3.4. Suppose that 16l6k − 2 and 16j6k − 1 − l. Let ν = [j/2], J =[
1
2 (k − j − l + 1)

]
and for r>1 write δr = λ

(2Jk)
r − r. Suppose that δr is increasing

with r, and let e be 0 or 1 according to whether j is even or odd. Finally, define
the exponent σ in general by taking σ = δj/j, and when (k+ δ2(ν+f)− 2δν+f )φ161
(f = 0, e), by taking σ = (δν + δν+e)/j. Then the following hold.

(Ia) Unconditionally, if j = 1, or
(Ib) if any one of the following conditions hold,
(α) l = 1 and k − j is either odd, or k − j = 2 or 4, or
(β) l = 2 and 36k − j65, or
(γ) l = 3 and k − j = 4 or 5, or
(δ) φ1 + · · ·+ φj6 1

3 ,
and in addition any one of the following conditions also hold,

(i) 16j6J + 1, or
(ii) 2 + e6j62J + 2− e and (k + δj+e)φ161, or

(iii) when j>3, we have

I∑
i=1

φi + k(φI−1 + φI)62 (36I6j),

then one has ∫ 1

0

|Fj(α)|2
l

dα� P 2l−l+εM̃2l−1
j H̃2l−1

j .

(Ic) If any one of the conditions (α), (β), (γ), or
(δ′) φ1 + · · ·+ φj6 1

3 (1− σ)−1,
hold, and none of (i), (ii), (iii) hold, then one has∫ 1

0

|Fj(α)|2
l

dα� P 2l−l+εM̃2l−1+σ
j H̃2l−1

j .

(II) If
(1) one of conditions (i), (ii), (iii) hold, and φ1 + · · ·+ φj> 1

3 , or
(2) none of conditions (i), (ii), (iii) hold, and φ1 + · · ·+ φj> 1

3 (1− σ)−1,
then ∫ 1

0

|Fj(α)|2
l

dα� P 2l−l− 1
3+εM̃2l

j H̃
2l−1
j .
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(III) In any case, one has ∫ 1

0

|Fj(α)|2
l

dα� P 2l−l+εM̃2l

j H̃
2l−1
j .

Proof. For the sake of convenience, write m = l − 1. We begin by noting that
M16P 1/3 for k>3, so that by combining the conclusions of Lemma 2.1 of Vaughan
[14], Lemma 3.3 of [18], and Lemma 3.3 of the present paper, we conclude for j = 1
that

R
(1)
j+r(P ;φ,0) � P 1+ε(P rH̃j)M̃j (06r6m). (3.22)

Suppose next that one of the conditions (i), (ii) or (iii) holds. Then the argument
of the proofs of Theorems 3.10 and 3.11 of [18] shows that

Kj+r(P ;φ,0) � P ε(P rH̃j)M̃j (06r6m). (3.23)

When conditions (α), (β) or (γ) hold, it follows that for 06r6m, the integer k−j−r
is either odd, or else is equal either to 2 or 4. In these circumstances, Lemma 3.3
of [18] shows that

R
(1)
j+r(P ;φ,0) � P 1+εKj+r(P ;φ,0) (06r6m), (3.24)

whence the estimate (3.22) follows from (3.23). When condition (δ) holds, on the
other hand, one has M̃j � P 1/3, and so we may conclude from Lemma 3.3 of the
present paper together with Lemma 3.3 of [18] that for 06r6m,

R
(1)
j+r(P ;φ,0) � P 1+εKj+r(P ;φ,0) + P

2
3+ε(P rH̃j)M̃2

j

� P 1+εKj+r(P ;φ,0) + P 1+ε(P rH̃j)M̃j .

Here we note that the former lemma applies when k − j − r is an even integer
exceeding 4, and the latter when k − j − r is odd, or equal to 2 or 4. Thus the
estimate (3.22) again follows from (3.23).

When none of the conditions (i), (ii), (iii) hold, meanwhile, then the argument
of the proofs of Theorems 3.10 and 3.11 of [18] yields the estimate

Kj+r(P ;φ,0) � P r+εH̃jM̃
1+σ
j . (3.25)

Since (3.24) again holds when conditions (α), (β) or (γ) are satisfied, we deduce
from (3.25) that when one of the latter conditions holds, one has

R
(1)
j+r(P ;φ,0) � P 1+ε(P rH̃j)M̃1+σ

j (06r6m). (3.26)

When condition (δ′) holds, meanwhile, one has M̃1−σ
j � P 1/3, and in such cir-

cumstances one may conclude from Lemma 3.3 of the present paper together with
Lemma 3.3 of [18] that for 06r6m,

R
(1)
j+r(P ;φ,0) � P 1+εKj+r(P ;φ,0) + P

2
3+ε(P rH̃j)(M̃1+σ

j P
1
3 ),
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and hence (3.26) again follows from (3.25).
When condition (1) of the statement of Theorem 3.4 holds, one has M̃j � P 1/3,

and thus from Lemma 3.3 of the present paper, Lemma 3.3 of [18], and (3.23), one
obtains in a manner similar to that above,

R
(1)
j+r(P ;φ,0) � P

2
3+ε(P rH̃j)M̃2

j (06r6m). (3.27)

When condition (2) of the statement of Theorem 3.4 holds, meanwhile, we have
M̃1−σ
j � P 1/3, whence by Lemma 3.3 of the present paper, Lemma 3.3 of [18], and

(3.25), one obtains the estimate (3.27) once again. Finally, we note that Lemma
3.2 of [18] provides the bound

R
(1)
j+r(P ;φ,0) � P 1+ε(P rH̃j)M̃2

j (06r6m). (3.28)

On collecting together (3.22), (3.26) and (3.28), we find that in all cases one has
a bound of the shape

R
(1)
j+r(P ;φ,0) � P 1+ε(P rH̃j)M̃1+τ

j (06r6m), (3.29)

where τ = 0 when conditions (Ia) or (Ib) hold, where τ = σ when (Ic) holds,
where M̃τ

j = M̃jP
−1/3 when (II) holds, and where τ = 1 when (III) holds. We

now apply Lemma 3.1, obtaining from (3.29) for 16r6m the estimate

R
(2r)
j (P ;φ) �P 2r−1(H̃jM̃j)2

r

R
(2r−1)
j (P ;φ)

+ P 2r+1−2r−2(H̃jM̃j)2
r+1−2

(
P r+1+εH̃jM̃

1+τ
j

)
�P 2r+1−r−1+εH̃2r+1−1

j M̃2r+1−1+τ
j

+ P 2r−1(H̃jM̃j)2
r

R
(2r−1)
j (P ;φ). (3.30)

Then by inductively applying the formula (3.30), starting from the base

R
(1)
j (P ;φ) � P 1+εH̃jM̃

1+τ
j

supplied by (3.29), one deduces that for 06r6m, one has

R
(2r)
j (P ;φ) � P 2r+1−r−1+εH̃2r+1−1

j M̃2r+1−1+τ
j .

The conclusion of the theorem follows from the case r = m of the latter formula,
on considering the underlying diophantine equations.

For the sake of completeness we add a final mean value estimate related to those
of Theorem 3.4 to our arsenal.
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Theorem 3.5. Suppose that 26l6k − 2. Then one has∫ 1

0

|Fk−l(α)|2
l

dα� P 2l−l+εM̃2l

k−lH̃
2l−1
k−l .

Proof. On considering the underlying diophantine equations, the argument of the
proof of case (III) of Theorem 3.4 leading to (3.29) yields

R
(1)
k−l+r(P ;φ,0) � P 1+ε(P rH̃k−l)M̃2

k−l (06r6l − 2). (3.31)

Moreover, it follows from (3.1) and the definition of R(1)
k−1(P ;φ,0) that

R
(1)
k−1(P ;φ,0)6M̃2

k−lR
∗, (3.32)

where R∗ denotes the number of integral solutions of the equation

z1 . . . zlh1 . . . hk−l = w1 . . . wlg1 . . . gk−l, (3.33)

with 16zi, wi6Pk−l (16i6l) and 16hn, gn62kHn (16n6k− l). Let z,w,g,h be a
solution of (3.33) counted by R∗. Standard estimates for the divisor function reveal
that for each fixed choice of z,h, one has O(P ε) possible choices for w,g, whence
R∗ = O(P l+εH̃k−l). By (3.32), we therefore have

R
(1)
k−1(P ;φ,0) � P l+εM̃2

k−lH̃k−l,

so that (3.31) holds also when r = l − 1. The lemma now follows by applying
Lemma 3.1 inductively in the same manner as in the proof of Theorem 3.4.

4. Iterative schemes based on mean value estimates

In our mean value based treatments we adopt two approaches, according to the
situation. We consider below the consequences of estimates of the form∫ 1

0

|Fj(α)|2
l

dα� P 2l−l−χj,l+εM̃
2l−1+τj,l

j H̃2l−1
j , (4.1)

for a suitable τj,l>0, and χj,l = 0 or 1
3 . We suppose in what follows that λr (r ∈ N)

are known permissible exponents, and we seek a new permissible exponent λ′s.

(i) Process As,lj . When s>j we may adopt the scheme

F 2
0 f

2s−2
0

↓
F1f

2s−2
1 →F2f

2s−4
2 →F3f

2s−6
3 → · · · → Fjf

2s−2j
j ⇒ (F 2l

j )2
−l

(f2t−2
j )as(f2t

j )bs

↓ ↓ ↓
f2s
1 f2s−2

2 f2s−2j+4
j−1
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where t, as and bs are defined by means of

t = [(1− 2−l)−1(s− j) + 1], θ = t− (1− 2−l)−1(s− j),

as = (1− 2−l)θ, bs = (1− 2−l)(1− θ).

Following the argument of §2 of [18] (see also §11), and recalling the definitions of
the parameters from §2, it follows from (4.1) that λ′s and φ are determined by the
equations

PH̃j−1M̃jQ
λs−j

j ≈ P 1−(l+χj,l)2
−l

H̃1−2−l

j M̃
1−2−l(1−τj,l)
j Q

asλt−1+bsλt

j ,

P H̃i−1M̃iQ
λs−i

i ≈
(
P (H̃iM̃i)2M

2(s−i−1)
i+1 Q

λs−i+1
i Q

λs−i−1
i+1

)1/2

(26i6j − 1),
(4.2)

PM1Q
λs−1
1 ≈

(
P (H1M1)2M2s−4

2 Qλs
1 Q

λs−2
2

)1/2

, (4.3)

Pλ
′
s ≈ PM2s−2

1 Q
λs−1
1 . (4.4)

Here and throughout, we use the symbol ≈ to denote that factors involving R and
P ε to fixed powers are to be ignored.

Write

δ = (2l − 1)(θλt−1 + (1− θ)λt)− 2lλs−j ,

Ei = λs−i+1 − 2λs−i + λs−i−1 (16i < j), (4.5)

κi = 2(s− i)− λs−i (26i6j). (4.6)

Now define αi, βi, γi for 16i6j by

αj = ((2l − 1)k + δ + 1− τj,l)−1,

βj = −k + δ + 1− τj,l,

γj = 2l − l + δ − j − χj,l,

and for i = j − 1, . . . , 1, successively by
γi = 1 + Ei + κi+1αi+1γi+1,

βi = Ei + κi+1αi+1βi+1,

αi = (2k + βi)−1.

(4.7)

Then on writing explicitly the equations relating the φi described above, and solving
the resulting system of linear equations, one verifies with little difficulty that φ and
λ′s satisfy

φi = αi (γi − βi(φ1 + · · ·+ φi−1)) (26i6j), (4.8)

φ1 = α1γ1, (4.9)

and
λ′s = λs−1(1− φ1) + 1 + (2s− 2)φ1. (4.10)

In this manner we may calculate a new permissible exponent λ′s, and in concert
with other available iterative schemes we repeatedly derive new sequences (λr) of
permissible exponents, ultimately attaining an approximation to converged values
(see the discussion of §2 of [18] for a detailed overview of such matters).
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(ii) Process Bs,lj,t . When s>j and

(1− 2−l)−1(s− j)6t6(1− 21−l)−1(s− j),

we may instead adopt the scheme

F 2
0 f

2s−2
0

↓
F1f

2s−2
1 →F2f

2s−4
2 →F3f

2s−6
3 → · · · → Fjf

2s−2j
j ⇒ (F 2l−1

j )as(F 2l

j )bs(f2t
j )

s−j
t

↓ ↓ ↓
f2s
1 f2s−2

2 f2s−2j+4
j−1

where as and bs are defined by

as = 2− 21−l − 2(s− j)t−1, bs = (s− j)t−1 − 1 + 21−l.

Following the argument of §2 of [18] (see also §11), it follows from (4.1) that λ′s
and φ are determined by the equations

PH̃j−1M̃jQ
λs−j

j ≈P (2l−1−l+1−χj,l−1)as+(2l−l−χj,l)bs(H̃jM̃j)(2
l−1−1)as+(2l−1)bs

× M̃
asτj,l−1+bsτj,l

j Q
λt(s−j)/t
j ,

and the equations (4.2)-(4.4).
We now write

δ = 2(s− j)λt − 2tλs−j ,

and define Ei and κi as in (4.5) and (4.6). Also, we define in this case αi, βi, γi for
16i6j by means of

αj = (2(s− j)(k − 1) + 2t+ δ + τ̃)−1
,

βj = 2(k − 1)(s− j − t) + δ + τ̃ ,

γj = 2(j + l − 2)(s− j − t) + t(2− 22−l) + δ − χ̃,

in which

τ̃ = (4(s− j)− (4− 22−l)t)τj,l−1 + ((2− 22−l)t− 2(s− j))τj,l,

χ̃ = ((4− 22−l)t− 4(s− j))χj,l−1 + (2(s− j)− t(2− 22−l))χj,l,

and for i = j − 1, . . . , 1, successively by (4.7). Then we find once again that φ
and λ′s satisfy (4.8)-(4.10), and once more we are able to establish new permissible
exponents by iterating this and allied procedures.

Notice that both processes As,lj and Bs,lj,t apply in particular when j = 1, in which
case they may or may not duplicate the methods of Vaughan [13, 14].
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5. Iterative schemes based on the Hardy-Littlewood method

We next investigate estimates arising from iterative schemes of the shape

F 2
0 f

2s−2
0

↓
F1f

2s−2
1 →F2f

2s−4
2 →F3f

2s−6
3 → · · · → Fjf

2s−2j
j ⇒ (Fj)(f

2s−2j
j )

↓ ↓ ↓
f2s
1 f2s−2

2 f2s−2j+4
j−1

(M1)

and
F 2

0 f
+
0

2s−2→F1f
+
1

2s−2→F2f
+
2

2s−4→F3f
+
3

2s−6→ . . .
↓ ↓
f2s
1 f2s−2

2

· · · →Fj−1f
+
j−1

2s−2j+2→Fjg
2
j f

2s−2j−2
j ⇒ (Fj)(g2

j f
2s−2j−2
j )

↓ ↓
f2s−2j+6
j−2 f2s−2j+4

j−1

(M2)

A perusal of the arguments of [18] should convince the reader that the derivation
of bounds close to optimal via the Hardy-Littlewood method in such schemes is a
matter of considerable complexity. We therefore strive for simplicity, sacrificing a
little on performance.

In the first iterative scheme above, we estimate the mean value occurring in the
final step of the iterative procedure by means of Lemma 13.1 of [18], which we
record in a slightly more general form. We first require some notation.

Definition 5.1. Suppose that k>4 and 16j6k − 3.
(i) Let Mj denote the union of the intervals

Mj(q, a) = {α ∈ [0, 1) : |qα− a|6PQ−k
j Rk(j−k)},

with 06a6q6P and (a, q) = 1. Also, let mj = [0, 1) \Mj.
(ii) Define $j to be 0 when j = k − 3, and to be 1 when 16j6k − 4. Also, write

wj = 21+j−k.
(iii) Let Nj denote the union of the intervals

Nj(q, a) = {α ∈ [0, 1) : |qα− a|6(PM$j

1 )wj(k−j)Q−k
j },

with 06a6q6(PM$j

1 )wj(k−j) and (a, q) = 1.

We note that the Mj(q, a) comprising Mj are disjoint, and likewise also the
Nj(q, a) comprising Nj .

Lemma 5.2. Suppose that k>4 and 16j6k − 3. Let u be a positive integer, and
define

t =
[(

k − j + 1
k − j

)
u+ 1

]
, θ = t−

(
k − j + 1
k − j

)
u.
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Suppose that ∆t−1 and ∆t are admissible exponents, and write

µu =
k − j

k − j + 1
(θ∆t−1 + (1− θ)∆t).

Then ∫ 1

0

|Fj(α)fj(α)2u|dα� P 1+εH̃jM̃jQ
2u−k
j

(
(PM$j

1 )−wjQ∆u
j +Qµu

j

)
.

Proof. When 16j6k− 4, the stated conclusion is provided by Lemma 13.1 of [18].
When j = k− 3, meanwhile, the conclusion follows from the argument of the proof
of the latter lemma, noting that by a Weyl differencing argument paralleling those
of Lemmata 6.1 and 12.1 of [18], it follows from Lemma 4.1 of [18] together with a
trivial estimate that

sup
α∈mk−3

|Fk−3(α)| � P 1−wk−3+εH̃k−3M̃k−3.

We next consider the second of the iterative schemes above, but in order to make
further progress we require some additional notation. When k>2, we write

Sk(q, a) =
q∑
r=1

e(ark/q),

and define also the multiplicative function wk(q) by taking

wk(puk+v) =
{
kp−u−

1
2 , when u>0 and v = 1,

p−u−1, when u>0 and 26v6k.

Note that there is some possibility of confusion between the function wk(q) and the
exponent wj , but that a perusal of the context should easily dispel any ambiguity.
Then according to Lemma 3 of Vaughan [12], whenever a ∈ Z and q ∈ N satisfy
(a, q) = 1, one has

q−1/26wk(q) � q−1/k, (5.1)

and
q−1Sk(q, a) � wk(q). (5.2)

We require the estimate contained in the following lemma.

Lemma 5.3. Suppose that k>4 and 16j6k−3. Then whenever α ∈ Nj(q, a) ⊆ Nj,
one has

gj(α) � Q1+ε
j wk(q)(1 +Qkj |α− a/q|)−1 + P ε(PM$j

1 )
1
2wj(k−j).
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In particular, whenever Qj>(PM$j

1 )wj(k−j), one has

gj(α) � Q1+ε
j wk(q)(1 +Qkj |α− a/q|)−1.

Proof. On making use of the refinements embodied in Theorem 4.1 of Vaughan [15],
we deduce that whenever α ∈ Nj(q, a) ⊆ Nj , one has

gj(α)− q−1Sk(q, a)v+
j (β) � q

1
2+ε(1 +Qkj |α− a/q|)1/2,

where

v+
j (β) =

∫ Qj

1
2QjR−j

e(βγk)dγ.

By partial integration, one readily deduces that

v+
j (β) � min{Qj , (QjR−j)1−k|β|} �

QjR
j(k−1)

1 +Qkj |β|
.

On recalling (5.2), therefore, we deduce that for α ∈ Nj(q, a) ⊆ Nj , one has

gj(α) �
wk(q)Q1+ε

j

1 +Qkj |α− a/q|
+ P ε(PM$j

1 )
1
2wj(k−j). (5.3)

This establishes the first conclusion of the lemma. When Qj>(PM$j

1 )wj(k−j), it
follows from (2.1) and (5.1) that for α ∈ Nj(q, a) ⊆ Nj , the first term on the right
hand side of (5.3) majorises the second, up to a factor of P ε. The second conclusion
of the lemma is now immediate.

We must also estimate Fj(α) for α ∈ Mj in order to prosecute the estimation
required for the use of the second iterative scheme. In this context, we write

τj(q, a,h,m) =
∣∣∣ q∑
r=1

e

(
a

q
Ψj(r,h,m)

)∣∣∣,
and then define F ∗

j (α) to be zero whenever α ∈ mj , and by

F ∗
j (α) =

∑
m

∑
h

Pq−1τj(q, a,h,m)
(1 + |α− a/q|h1 . . . hjP k−j)1/(k−j)

,

when α ∈ Mj(q, a) ⊆ Mj . Here, the summation is over m and h satisfying (2.1).
Finally, we define g∗j (α) to be zero for α ∈ nj , and by

g∗j (α) = Q1+ε
j wk(q)(1 +Qkj |α− a/q|)−1,

when α ∈ Nj(q, a) ⊆ Nj . We observe that this definition of g∗j (α) differs from that
provided in §2 of Vaughan and Wooley [16], but not in a manner damaging to our
subsequent argument.

We now describe an auxiliary lemma which may be of interest beyond this work.
Our treatment here is motivated by the proof of Lemma 3.1 of Brüdern and Wooley
[4].
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Lemma 5.4. Suppose that k>4. Let Q be a real number with 16Q6P . Let M
denote the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a|6QP−k},

with 06a6q6Q and (a, q) = 1. Let δ be a real number with δ > 1, and define the
function Υ(α) for α ∈ M by taking

Υ(α) = wk(q)2(1 + P k|α− a/q|)−δ

when α ∈ M(q, a) ⊆ M. Also, write t =
[
1
2k

]
. Then for any subset A of [1, P ]∩Z,

one has for each ε > 0 the estimate∫
M

Υ(α)
∣∣∣∑
x∈A

e(αxk)
∣∣∣2tdα� QεP 2t−k.

Proof. We begin by observing that∫
M

Υ(α)
∣∣∣∑
x∈A

e(αxk)
∣∣∣2tdα

6
∑

16q6Q

wk(q)2
∫ Q/Pk

−Q/Pk

(1 + P k|β|)−δ
q∑
a=1

∣∣∣∑
x∈A

e(xk(β + a/q))
∣∣∣2tdβ.

(5.4)

By orthogonality,

q∑
a=1

∣∣∣∑
x∈A

e(xk(β + a/q))
∣∣∣2t = q

∑
x∈A2t

q|ψ(x)

e(βψ(x)), (5.5)

where we write

ψ(x) =
t∑
i=1

(xk2i−1 − xk2i). (5.6)

But plainly, ∑
x∈A2t

q|ψ(x)

e(βψ(x))6
∑

16x1,...,x2t6P
q|ψ(x)

16(Pq−1 + 1)2tρ(q), (5.7)

where ρ(q) denotes the number of solutions of the congruence

t∑
i=1

(xk2i−1 − xk2i) ≡ 0 (mod q),
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with 16xi6q (16i62t). By orthogonality, moreover, it follows from (5.6) that

qρ(q) =
q∑
a=1

|Sk(q, a)|2t =
q∑
a=1

(q, a)2t
∣∣∣Sk( q

(q, a)
,

a

(q, a)

)∣∣∣2t,
whence by (5.2),

qρ(q) � q2t
q∑
a=1

wk(q/(q, a))2t = q2t
∑
r|q

rwk(r)2t.

Consequently, on inserting this estimate into (5.7) and substituting into (5.4) and
(5.5), we deduce that∫

M

Υ(α)
∣∣∣∑
x∈A

e(αxk)
∣∣∣2tdα� P 2t−k

∑
16q6Q

wk(q)2σ(q), (5.8)

where
σ(q) =

∑
r|q

rwk(r)2t. (5.9)

The function wk(r) is multiplicative with respect to r, and thus σ(q) is likewise
a multiplicative function of q. Further, it follows from (5.9) that for each prime p
and natural number h, one has

σ(ph) =
h∑
l=0

plwk(pl)2t,

whence by the definition of wk(q),

σ(ph) = 1 +
∑

uk+16h

puk+1(kp−u−
1
2 )2t +

k∑
v=2

∑
uk+v6h

pu(k−2t)+v−2t.

Thus, on recalling that t = [k/2], we deduce that

σ(p)61 + k2tp−1,

and for h>2 we obtain

σ(ph) �k p
h−1

k (k−2t)+1−t +
k∑
v=2

p
h−v

k (k−2t)+v−2t

�k p
h−1

k (k−2t)+1−t + p
h
k (k−2t) � ph/k.
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We therefore arrive at the estimates

wk(p)2σ(p) �k p
−1,

wk(puk+1)2σ(puk+1) �k p
−u−1+ 1

k (u>1),

wk(puk+v)2σ(puk+v) �k p
−u−1 (u>0 and 26v6k).

The multiplicative properties of σ(q) and wk(q) consequently assure us that for a
suitable constant A depending at most on k,

∑
16q6Q

wk(q)2σ(q)6
∏
p6Q

(
1 +

∞∑
h=1

wk(ph)2σ(ph)
)

6
∏
p6Q

(1 +Ap−1) � Qε.

The conclusion of the lemma now follows immediately from (5.8).

We record an immediate corollary of Lemma 5.4 in the form of the following
lemma.

Lemma 5.5. Suppose that k>4, 16j6k − 3 and u>[ 12k]. Suppose also that

Qj>(PM$j )wj(k−j).

Then ∫ 1

0

|Fj(α)gj(α)2fj(α)2u|dα� P 1+εM̃jH̃jQ
2u+2−k
j M,

where
M = (PM$j

1 )−wjQ
∆u+1
j + 1.

Proof. Following the argument of the proof of Lemma 3.1 of [16] (see, in particular,
equations (3.1), (3.7) and (3.8) of that paper), we obtain∫ 1

0

|Fj(α)gj(α)2fj(α)2u|dα� P 1+εH̃jM̃jQ
2u+2−k
j (PM$j

1 )−wjQ
∆u+1
j + I, (5.10)

where

I =
∫

Nj

F ∗
j (α)|gj(α)2fj(α)2u|dα. (5.11)

We note here that our choice of $j when j = k−3 ensures that the above conclusion
remains valid also when j = k − 3. Since by hypothesis we have

(PM$j

1 )wj(k−j)6Qj ,
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it follows from Lemma 5.3 that for α ∈ Nj(q, a) ⊆ Nj , one has

gj(α) � Q1+ε
j wk(q)(1 +Qkj |α− a/q|)−1.

Then on making use of a trivial estimate for F ∗
j (α), we deduce from (5.11) that

I � PM̃jH̃jQ
2+ε
j

∫
Nj

Υj(α)|fj(α)|2udα, (5.12)

where Υj(α) is the function defined for α ∈ Nj by taking

Υj(α) = wk(q)2(1 +Qkj |α− a/q|)−2,

when α ∈ Nj(q, a) ⊆ Nj . But the hypotheses of the statement of Lemma 5.4 are
satisfied for Υj(α) on Nj , whence for u>[ 12k] we find that∫

Nj

Υj(α)|fj(α)|2udα� Q2u−k+ε
j . (5.13)

Thus we conclude from (5.12) and (5.13) that

I � P 1+εM̃jH̃jQ
2u+2−k
j ,

and hence the desired conclusion is immediate from (5.10).

We supplement Lemma 5.5 with a variant of Lemmata 3.1 and 3.2 of [16] which
is of interest when

(PM$j

1 )
1
2wj(k−j) < Qj < (PM$j

1 )wj(k−j). (5.14)

Lemma 5.6. Suppose that k>4 and 16j6k−3, and suppose also that the condition
(5.14) holds. Let u be a positive integer, and define t and θ as in the statement
of Lemma 5.2. Suppose further that ∆t−1 and ∆t are admissible exponents, and
define µu also as in the statement of Lemma 5.2. Define next

γ = 1− 2
k
− 1
k − j + 1

, v = u− 4
k
, w = [γ−1v + 1],

and
θ′ = w − γ−1v.

Suppose that ∆w−1 and ∆w are admissible exponents, and write

ρu = γ(θ′∆w−1 + (1− θ′)∆w).

Then one has ∫ 1

0

|Fj(α)gj(α)2fj(α)2u|dα� P 1+εH̃jM̃jQ
2u+2−k
j M,
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where
M = (PM$j

1 )−wjQ
∆u+1
j + (PM$j

1 )(k−j)wjQµu−2
j +Qρu

j .

Proof. Following the argument of the proof of Lemma 3.1 of [16] (see, in particular,
equations (3.1), (3.7), (3.8), (3.9) and (3.13)), we find that∫ 1

0

|Fj(α)gj(α)2fj(α)2u|dα� P 1+εH̃jM̃jQ
2u+2−k
j M′ + J1, (5.15)

where
M′ = (PM$j

1 )−wjQ
∆u+1
j + (PM$j

1 )(k−j)wjQµu−2
j (5.16)

and
J1 =

∫
Nj

F ∗
j (α)g∗j (α)2|fj(α)|2udα. (5.17)

Here we note that our definition of g∗j (α) differs from that of [16], the substitution
of the present definition being permitted through the use of Lemma 5.3.

We estimate the mean value J1 via Hölder’s inequality, deducing from (5.17)
that

J16J
1/(k−j+1)
2 J

2/k
3

(
Jθ

′

4 J
1−θ′
5

)γ
, (5.18)

where
J2 =

∫
Nj

F ∗
j (α)k−j+1dα, J3 =

∫
Nj

g∗j (α)k|fj(α)|4dα,

J4 =
∫ 1

0

|fj(α)|2w−2dα, J5 =
∫ 1

0

|fj(α)|2wdα.

But since ∆w−1 and ∆w are admissible exponents, one has

J4 � Q
2w−2−k+∆w−1+ε
j and J5 � Q2w−k+∆w+ε

j . (5.19)

Also, it is a consequence of Lemma 4.10 of [18] that

J2 � P ε(PH̃jM̃j)k−j+1Q−k
j . (5.20)

In order to estimate J3 we first note that by (5.1), whenever α ∈ Nj(q, a) ⊆ Nj ,
one has

g∗j (α)k = wk(q)kQk+εj (1 +Qkj |α− a/q|)−k

� Qk+εj (q +Qkj |qα− a|)−1.

When h is an integer, write ψh for the number of solutions of the equation

xk1 + xk2 − xk3 − xk4 = h,
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with xi ∈ A(Qj , R) (16i64). Then plainly,

|fj(α)|4 =
∑

|h|62Qk
j

ψhe(αh),

and thus it is a consequence of Lemma 2 of Brüdern [3] that

∫
Nj

g∗j (α)k|fj(α)|4dα� Qεj

(PM$j

1 )wj(k−j)ψ0 +
∑
h6=0

|ψh|

 . (5.21)

But by Hua’s Lemma (see, for example, Lemma 2.5 of Vaughan [15]), together with
an elementary counting argument,

ψ0 � Q2+ε
j and

∑
h∈Z

|ψh| � Q4
j .

Then on recalling that our hypotheses imply that

Qj > (PM$j

1 )
1
2wj(k−j),

we conclude from (5.21) that

J3 =
∫

Nj

g∗j (α)k|fj(α)|4dα� Q4+ε
j . (5.22)

On combining (5.18)-(5.20) and (5.22), we arrive at the estimate

J1 � P 1+εH̃jM̃jQ
2u+2−k+ρu

j ,

and so the conclusion of the lemma is immediate from (5.15) and (5.16).

Our next task is to assemble the estimates described above into a tool sufficiently
simple to apply that it is viable to employ computationally. Our aim is to establish
either that∫ 1

0

|Fj(α)fj(α)2u+2|dα� P 1+εH̃jM̃jQ
2u+2−k
j

(
(PM$j

1 )−wjQ
∆u+1
j + 1

)
, (5.23)

or else that∫ 1

0

|Fj(α)gj(α)2fj(α)2u|dα� P 1+εH̃jM̃jQ
2u+2−k
j

(
(PM$j

1 )−wjQ
∆u+1
j + 1

)
.

(5.24)
Thus we seek to show that the mean values on the left hand sides of (5.23) and
(5.24) are bounded above by the estimate for the minor arc contribution stemming
from our methods, together with the “expected” major arc contribution. In order
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to ease our discussion, we list a number of conditions concerning the quantities µu,
ρu and ∆u defined in the statements of Lemmata 5.2, 5.5 and 5.6.

wj(1 +$jφj)6(∆u+1 − µu+1)(1− φ1 − · · · − φj), (A1)

µu+160, (A2)

u>[ 12k] and wj(k − j)(1 +$jφ1)61− φ1 − · · · − φj , (B)
1
2wj(k − j)(1 +$jφ1)61− φ1 − · · · − φj6wj(k − j)(1 +$jφ1), (C1)

wj(1 +$jφ1)6(∆u+1 − ρu)(1− φ1 − · · · − φj), (C2)

wj(k − j + 1)(1 +$jφj)6(2 + ∆u+1 − µu)(1− φ1 − · · · − φj), (C3)

wj(k − j)(1 +$jφ1)6(2− µu)(1− φ1 − · · · − φj), (C4)

ρu60, (C5)

∆u+1(1− φ1 − · · · − φj) > wj(1 +$jφ1), (D1)

∆u+1(1− φ1 − · · · − φj)6wj(1 +$jφ1). (D2)

We now summarise the conclusions of Lemmata 5.2, 5.5 and 5.6.

Lemma 5.7. Let k>4 and 16j6k − 3.
(I) Suppose that condition (D1) holds, and further that one of the conditions (B),

or each of (C1), (C2), (C3) holds. Then one has∫ 1

0

|Fj(α)gj(α)2fj(α)2u|dα� P 1+εH̃jM̃jQ
2u+2−k
j (PM$j

1 )−wjQ
∆u+1
j .

(I ′) Suppose that the condition (A1) holds. Then one has∫ 1

0

|Fj(α)fj(α)2u+2|dα� P 1+εH̃jM̃jQ
2u+2−k
j (PM$j

1 )−wjQ
∆u+1
j .

(II) Suppose that condition (D2) holds, and further that one of the conditions (B),
or each of (C1), (C4) and (C5) holds. Then one has∫ 1

0

|Fj(α)gj(α)2fj(α)2u|dα� P 1+εH̃jM̃jQ
2u+2−k
j .

(II ′) Suppose that condition (D2) holds, and further that condition (A2) holds. Then
one has ∫ 1

0

|Fj(α)fj(α)2u+2|dα� P 1+εH̃jM̃jQ
2u+2−k
j .

Proof. The assertions of each case of the lemma are immediate, save that in part
(I ′) we have made the observation that the validity of condition (A1) automatically
implies that of (D1).
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Since for each i one has 06φi61/k, one deduces readily that the condition (B)
is satisfied automatically whenever

u>[ 12k] and 21+j−k(k +$j)61.

In particular, therefore, the condition (B) is satisfied when u>[ 12k] and

j6k − 4 and k67, (5.25)

or
j6k − 5 and k615, (5.26)

or
j6k − 6 and k631. (5.27)

We finish this section by indicating how to obtain new permissible exponents via
the iterative schemes (M1) and (M2). We suppose in what follows that λr (r ∈ N)
are known permissible exponents, and we seek a new permissible exponent λ′s.

(i) Process Ms
j . Consider first the iterative scheme (M2) above. Suppose that the

conditions of Lemma 5.7(I) hold with u = s− j − 1. Then following the argument
of §2 of [18] (see also §§11, 13), we find from Lemma 5.7(I) that λ′s and φ are
determined by the relations

PH̃j−1M̃jQ
λs−j

j ≈ PH̃jM̃jQ
λs−j

j (PM$j

1 )−wj , (5.28)

and the equations (4.2)-(4.4). Define Ei as in (4.5) for 16i < j, and define κi as in
(4.6) for (26i6j). Also, define αi, βi, γi, δi for 16i6j by

αj = k−1, βj = 0, γj = 1− wj , δj = wj$j , (5.29)

and for i = j − 1, . . . , 2 successively by

δi = Ei + κi+1αi+1δi+1,

γi = 1 + Ei + κi+1αi+1γi+1,

βi = Ei + κi+1αi+1βi+1,

αi = (2k + βi)−1,

(5.30)

and finally,
δ1 = E1 + κ2α2δ2,

γ1 = 1 + E1 + κ2α2γ2,

β1 = 0,

α1 = (2k + δ1)−1.

(5.31)

Then we find that φ and λ′s satisfy

φi = αi(γi − βi(φ2 + · · ·+ φi−1)− δiφ1) (26i6j), (5.32)



FURTHER IMPROVEMENTS IN WARING’S PROBLEM, IV 33

φ1 = α1γ1 (5.33)

and
λ′s = λs−1(1− φ1) + 1 + (2s− 2)φ1. (5.34)

Thus, in a manner similar to that alluded to in §4, we are able to establish new
permissible exponents by iterating this and allied procedures.

Suppose next that the conditions of Lemma 5.7(II) hold with u = s − j − 1.
Then again following the argument of §2 of [18], we now find from Lemma 5.7(II)
that λ′s and φ are determined by the relations

PH̃j−1M̃jQ
λs−j

j ≈ PH̃jM̃jQ
2s−2j−k
j , (5.35)

and the equations (4.2)-(4.4). Define Ei as in (4.5) for 16i < j, and define κi as in
(4.6) for (26i6j). Also, define αi, βi, γi for 16i6j by

αj = κ−1
j , βj = κj − k, γj = 1 + κj − k, (5.36)

and for i = j−1, . . . , 1, successively by means of (4.7). Then we find that φ and λ′s
satisfy (4.8)-(4.10), and again we are able to establish new permissible exponents
by iterating this and related procedures.

(ii) Process Ns
j . Next consider the iterative scheme (M1) above. Suppose that

the conditions of Lemma 5.7(I ′) hold with u = s − j − 1. Then we find that λ′s
and φ are determined by (5.28)-(5.34). Meanwhile, when the conditions of Lemma
5.7(II ′) hold with u = s − j − 1, one finds instead that λ′s and φ are determined
by (5.35), (5.36) and (4.7)-(4.10). In either case we are able to establish new
permissible exponents by iterating these and similar procedures.

6. Waring’s problem

We defer announcing the permissible exponents obtained through our methods to
§§9 to 22, but pause here to indicate how Theorem 1.1 may be established by means
of the latter exponents. We require the following theorem, which is essentially a
consequence of Corollary 1 to Theorem 4.2 of Wooley [22] and Theorem 5.1 of [22].

Theorem 6.1. Let s, t and w be natural numbers satisfying 2s>k+1, and suppose
that ∆n (n = s, t, w) are admissible exponents. Define

σ(k) =
k −∆t −∆s∆w

2(s(k + ∆w −∆t) + tw(1 + ∆s))
(6.1)

and

λ(k) =
s(k −∆t) + tw∆s

s(k + ∆w −∆t) + tw(1 + ∆s)
. (6.2)

Suppose that
1
2 < λ(k) < 1− σ(k). (6.3)
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Then for each natural number v with v>k, and each admissible exponent ∆v, we
have

G(k)6max
{

2v + 1 +
[

∆v

σ(k)

]
, 4k

}
. (6.4)

We note that some minor modifications to the argument of the proof of Theorem
5.1 of [22] will be required in order to account for the use of the inequality (2.12)
in place of the mean value∫ 1

0

|F0(α)2f0(α)2s|dα� Pλs+1+ε.

However, the replacement of the generating functions f0(α) in the latter by f+
0 (α)

in the former causes no technical problems, and affects only the singular integral
in the asymptotic formula resulting from the application of the Hardy-Littlewood
method. This singular integral, moreover, is easily bounded below by the expected
quantity using only the methods of Chapter 2 of Vaughan [15], and so the desired
conclusion follows with little difficulty.

In order to establish Theorem 1.1, one merely optimises the choice of σ(k)
through appropriate choices of s, t, w, and then one optimises the upper bound
(6.4) for G(k) through a suitable choice of v.

7. Distribution of αnk modulo 1

We turn our attention now to the proofs of Theorems 1.2 and 1.3. Note first
that the discussion of §6 of Wooley [22] leading to the proof of Theorem 1.2 of [22]
establishes the following theorem.

Theorem 7.1. Let k>4, and suppose that σ(k) and λ(k) are defined as in (6.1)
and (6.2), and satisfy (6.3). Let α ∈ R and ε > 0. Then there is a real number
N(ε, k) with the property that whenever N>N(ε, k), one has

min
16n6N

‖αnk‖6Nε−σ(k).

Thus the work expended in establishing Theorem 1.1 already yields the conclu-
sion of Theorem 1.2.

The proof of Theorem 1.3 is a little more involved, though in principle this follows
the argument of the proof of Theorem 1.1 of Wooley [20] in essentially all details.

Theorem 7.2. Let k be a natural number with 76k620, and let α ∈ R and ε > 0.
Suppose that s is a natural number with 16s6k, and that ∆s is an admissible
exponent derived through the methods described in §§9–22. Define

τ(k) =
k − 2∆s

4s2 − 1
.

Then there are infinitely many natural numbers n satisfying ‖αnk‖6nε−τ(k).
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Of course, the exponent claimed in the statement of Theorem 7.2 is valid in far
greater generality, but our proof is much simplified by restricting to the methods
of this paper. When P and H are large real numbers, denote by Us(P,H,R) the
number of solutions of the diophantine equation

h1x
k
1 + · · ·+ hsx

k
s = g1y

k
1 + · · ·+ gsy

k
s (7.1)

with
16hi, gi6H and xi, yi ∈ A(P,R) (16i6s).

In order to prove Theorem 7.2, we follow the argument of the proof of Lemma
4.2 of [20], together with the argument of the proof of Theorem 1.1 of that paper
(described at the end of §4 of [20]). Thus we find that the conclusion of Theorem
7.2 will follow provided only that we establish that when s is a natural number
with 16s6k, and λs is a permissible exponent, then

Us(P,H,R) � H2s−1+εPλs+ε. (7.2)

A program for establishing such bounds is described in §3 of [20], but in light of
subsequent developments we feel obliged to outline some of the necessary steps so
far as the application at hand is concerned. Since a full account of such a proof
would be costly in terms of space, we will be economical in the details by referring
frequently to earlier work.

When 16j6k, we write

fj(α) =
∑

16g6H

fj(gα) and Fj(α) =
∑

16g6H

Fj(gα),

and we note that by orthogonality, one has

Us(P,H,R) =
∫ 1

0

|f0(α)|2sdα.

We will refer to an exponent λs as derived whenever the inequality (7.2) holds. Our
aim is to show, at least when 16s6k, that the exponent λs is derived whenever
λs is also a permissible exponent stemming from the methods described herein. In
this context, we note that λs = 2s − 1 is always a derived exponent. For suppose
that g,h,x,y is any solution of the equation (7.1) counted by Us(P,H,R). For
each fixed choice of hi, xi (26i6s) and gj , yj (16j6s), an elementary estimate for
the divisor function shows that there are at most O((HP )ε) possible choices for h1

and x1, whence
Us(P,H,R) � (HP )2s−1+ε.

Observe next that as a consequence of Lemma 3.4 of [20], and the argument of
the proof of Lemma 3.1 of Wooley [19] (see, in particular, equation (3.7)), one has
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for 06j6k − 1,∫ 1

0

|Fj(α)2fj(α)2s|dα

� P εH1+εH̃jM̃jM
2s−1
j+1

×
(
HPH̃jM̃j+1Us(Qj ,H,R) +

∫ 1

0

|Fj+1(α)fj+1(α)2s|dα
)
.

Thus, whenever (λs) is an existing sequence of derived exponents, one obtains the
following analogues of Lemmata 2.1 and 2.2 above by essentially identical argu-
ments.

Lemma 7.3. We have∫ 1

0

|F0(α)2f0(α)2s|dα

� (HP )εM2s−1
1

(
H2s+1PM1Q

λs
1 +H

∫ 1

0

|F1(α)f1(α)2s|dα
)
.

Lemma 7.4. Whenever 0 < t < 2s and 16j6k − 1, we have∫ 1

0

|Fj(α)fj(α)2s|dα� (HP )ε(H2t−1Qλt
j )1/2(HH̃jM̃jM

4s−2t−1
j+1 Tj+1)1/2,

where

Tj+1 = PH̃jM̃j+1H
4s−2tQ

λ2s−t

j+1 +
∫ 1

0

|Fj+1(α)fj+1(α)4s−2t|dα.

The reader may wish to compare Lemma 7.4 with Lemma 3.5 of [20], which
considers the special case with s = t.

Now observe from the tables in §§9-22 that for 76k620 and 16s6k, the iterative
procedures described herein always terminate with processes of type As,lj orBs,lj,t (l =
1, 2). A modicum of contemplation within the discussion of §4 above therefore leads
one to the conclusion that the claimed bound (7.2) will follow, for any permissible
exponent λs produced by the methods of this paper for 16s6k, so long as we are
able to establish the estimates contained in the following lemmata.

Lemma 7.5. With the hypotheses of the statement of Theorem 3.4 for 16l6k− 2,
subject to (Ia) or (Ib), one has∫ 1

0

|Fj(α)|2
l

dα� H2l−1+εP 2l−l+εM̃2l−1
j H̃2l−1

j ,
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subject to (Ic), one has∫ 1

0

|Fj(α)|2
l

dα� H2l−1+εP 2l−l+εM̃2l−1+σ
j H̃2l−1

j ,

subject to (II), one has∫ 1

0

|Fj(α)|2
l

dα� H2l−1+εP 2l−l− 1
3+εM̃2l

j H̃
2l−1
j ,

and subject to (III), one has∫ 1

0

|Fj(α)|2
l

dα� H2l−1+εP 2l−l+εM̃2l

j H̃
2l−1
j .

Lemma 7.6. Suppose that 26l6k − 2. Then one has∫ 1

0

|Fk−l(α)|2
l

dα� H2l−1+εP 2l−l+εM̃2l

k−lH̃
2l−1
k−l .

In order to establish Lemmata 7.5 and 7.6, we note that in the diophantine
equations underlying the mean values∫ 1

0

|Fj(α)|2
l

dα,

the equations differ from those underlying R(s)
j (P ;φ), defined in (3.1), only in so far

as an additional linear variable in the interval [1,H] occurs as a coefficient of each
polynomial Ψj . Consequently, on following the argument of the proof of Lemma
3.1 above, we find that∫ 1

0

|Fj(α)|2
l+1
dα�P 2l−1(HH̃jM̃j)2

l

∫ 1

0

|Fj(α)|2
l

dα

+ P 2l−l−1(HH̃jM̃j)2
l−1

(
S′

∫ 1

0

|Fj(α)|2
l+1
dα

)1/2

,

where S′ denotes the number of solutions of the equation

hΨj,l(z;h;m;u) = gΨj,l(w;g;n;v),

with the polynomials Ψj,l as in the proof of Lemma 3.1, and with the variables
in the same ranges, save that 16g, h6H. Then by a divisor estimate argument
paralleling the start of the proof of Lemma 3.2 of [18], we find that∫ 1

0

|Fj(α)|2
l+1
dα�P 2l−1(HH̃jM̃j)2

l

∫ 1

0

|Fj(α)|2
l

dα

+ P 2l+1−2l−2(HH̃jM̃j)2
l+1−2H1+εR

(1)
j+l(P ;φ,0).

On considering the underlying diophantine equations, the bounds claimed in Lem-
mata 7.5 and 7.6 now follow by an inductive argument similar to that employed in
the proofs of Theorems 3.4 and 3.5.

This completes the proof of Theorem 7.2.
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8. Preliminary discussion of computations

By employing a computer to optimise the use of the methods described in §§2–
5 of this paper, one derives an upper bound for a sequence (λs) of permissible
exponents. In the tables presented in §§9–22, we record for each value of k the per-
missible exponents thus derived, together with the process yielding these exponents
towards the end of the iteration process. Naturally, the conditions necessary for the
application of the latter process may not initially hold. Under such circumstances,
we begin by applying simpler, more robust, versions of such processes. Thus, for
example, case (III) of Theorem 3.4 implies that processes A and B may always be
applied with τ = 1. In order to give some indication of the parameters φ arising in
these iterative processes, we record also the values of φ1, φj ,

∑j
i=1 φi (when j > 1),

and when j>3 we record also the value of

φ∗s = max
36I6j

( I∑
i=1

φi + k(φI−1 + φI)
)
,

corresponding to each process involving j differencing operations. Adjacent to the
table, we discuss any issues pertaining to the applicability of iterative processes
in the light of the conditions associated with the use of Theorems 3.4, 3.5 and
Lemma 5.7. In particular, we note that the paramter χj,l is zero throughout unless
otherwise indicated. Recorded values for λs and φ are upper bounds, computations
having been performed in double precision arithmetic.

Following the primary table, we record also the values of σ(k), τ(k) and G(k)
(for k>9) stemming from Theorems 6.1 and 7.2, the values of the former quantities
recorded being lower bounds. We provide a parenthetic indication of the relevant
parameters employed in the derivation of these values.

Note that the method of the proof of Theorem 5.1 of Wooley [22] shows that
whenever ∆v is an admissible exponent, then for

s>v +
[

∆v

2σ(k)

]
+ 1,

one has ∫ 1

0

|f0(α)|2sdα� P 2s−k,

whence λs = 2s− k is a permissible exponent.
A final word is in order concerning the application of the processes Ms

j and Ns
j .

When calculating a permissible exponent λs by means of Lemma 5.7, one frequently
encounters conditions involving admissible exponents ∆u with u substantially larger
than s. Thus it is useful to prepare preliminary estimates by applying process
Ms
j throughout, where j is sufficiently small that the condition (B) in the simple

variants (5.25)-(5.27) is applicable. Since the conditions (D1) and (D2) are easy to
check computationally, one obtains in this manner reasonably strong permissible
exponents λs with s exceeding some suitable natural number s0. Equipped with
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these preliminary bounds, we may subsequently refine the iterative procedures so
as to attain the exponents claimed in the primary tables. Comments clarifying this
process are included in each section.

We conclude by discussing a final simple process not without interest.

Process Ds. Suppose that s>k and t is a natural number. Then whenever λs is
a permissible exponent, then also the exponent λ′s+t is permissible, where

λ′s+t = max{λs + 2t(1− σ(k)), 2s+ 2t− k},

and here σ(k) is the exponent arising in the statement of Theorem 6.1. In order to
establish this claim, we adapt the argument of the proof of Theorem 5.1 of Wooley
[22]. Write

f(α) =
∑

x∈A(P,R)

e(αxk) and g(α) =
∑

16x6P

e(αxk).

Let m denote the set of real numbers α ∈ [0, 1) with the property that, whenever
a ∈ Z, q ∈ N, (a, q) = 1 and |qα − a|6P 1−k, one has q > P . Then as in the proof
of Theorem 5.1 of [22], one has

∫
m

|g(α)2f(α)2s+2t−2|dα�
(

sup
α∈m

|f(α)|
)2t

∫ 1

0

|g(α)2f(α)2s−2|dα

� (P 1−σ(k)+ε)2tPλs+ε.

On the other hand, provided that s>k, one may apply a standard pruning argument,
of the type described in §5 of Vaughan [13], to show that∫

M

|g(α)2f(α)2s+2t−2|dα� P 2s+2t−k.

By considering the underlying diophantine equations, the claimed conclusion follows
on noting that

∫ 1

0

|f(α)|2s+2tdα�
∫ 1

0

|g(α)2f(α)2s+2t−2|dα.

As a consequence of the process Ds, we may restrict attention to those s for
which the processes A, B, N or M demonstrate that the permissible exponent λs
satisfies

λs < λs−1 + 2(1− σ(k)),

for all permissible exponents λs−1.
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9. Permissible exponents for seventh powers

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents λs listed in the table for
36s612 are identical with those on p.237 of [18], and indeed for s = 3, 4, these
exponents were established earlier by Vaughan [14]. We remark that in this range
of s, one may take τj,l = 0 (l = 1, 2) throughout (see [18] for details). Our compu-
tations for s>13 depend on first obtaining preliminary estimates by applying the
process Ms

2 throughout (noting (5.25) and checking (D1) or (D2)). In this way we
obtain the preliminary permissible exponents

λ13 = 19.211, λ14 = 21.127, λ15 = 23.073, λ16 = 25.019,

and λs = 2s− 7 for s>17. Equipped with these preliminary bounds, we refine our
procedure as indicated in the table. One may computationally check the validity
of the appropriate case of Lemma 5.7 as follows.

(a) s = 13, 14. With process Ms
4 , one finds that Lemma 5.7(I) holds with u =

s− 5 by virtue of conditions (D1), (C1), (C2), (C3).

(b) s = 15. With process M15
3 , one finds that Lemma 5.7(I) holds with u = 11

by virtue of conditions (D1), (B).

(c) s = 16. With process M16
2 , one finds that Lemma 5.7(I) holds with u = 13

by virtue of conditions (D1), (B).

(d) s>17. One finds that process Ds applies.



FURTHER IMPROVEMENTS IN WARING’S PROBLEM, IV 41

Table of permissible exponents for k = 7

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0639191 0.03195955

4 A4,2
1 4.2641175 0.06818557

5 B5,2
2,5 5.5891167 0.08699398 0.0355 0.1225

6 A6,2
2 7.0143820 0.09641272 0.0694 0.1658

7 B7,2
3,6 8.5410894 0.10564538 0.0406 0.2343 1.1347

8 A8,2
3 10.1526323 0.11202654 0.0691 0.2800 1.4554

9 B9,2
4,8 11.8469485 0.11873997 0.0416 0.3577 1.6983

10 A10,2
4 13.6055676 0.12329153 0.0661 0.4030 1.8315

11 A11,2
4 15.4242973 0.12803790 0.0859 0.4429 1.9600

12 A12,2
4 17.2932208 0.13214156 0.1027 0.4781 2.0785

13 M13
4 19.1925374 0.13409068 0.1072 0.4919 2.1387

14 M14
4 21.1139297 0.13535033 0.1072 0.4957 2.1606

15 M15
3 23.0528848 0.13635572 0.1226 0.3903 2.1673

16 M16
2 25.0105382 0.13784908 0.1327 0.2706

s>17 Ds 2s− 7

σ(7) = 0.017475 (s = 14, t = 5, w = 8),

τ(7) = 0.020777 (s = 6).

10. Permissible exponents for eighth powers

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents λs listed in the table improve
on those provided by [16, 18] for 36s620. Broadly speaking one can follow the
discussion of [18] for 36s614, though the improvements contained in Theorem 3.4
lead to sharper estimates, and permit a slightly more powerful iterative process.
In particular, one may take τj,l = 0 (l = 1, 2) for 36s612, and τ5,2 = 0.002 for
s = 13, 14 (see §11 of [18] for details). Our computations for s>15 depend on first
obtaining preliminary estimates by applying the process Ms

3 for 166s620, and Ms
2

for s>21 (noting (5.26) and checking (D1) or (D2)). In this way we obtain the
preliminary permissible exponents

λ15 = 22.282, λ16 = 24.206, λ17 = 26.143, λ18 = 28.098,

λ19 = 30.061, λ20 = 32.031, λ21 = 34.010,

and λs = 2s− 8 for s>22. Equipped with these preliminary bounds, we refine our
procedure as indicated in the table. One may computationally check the validity
of the appropriate case of Lemma 5.7 as follows.
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(a) 156s617. With processMs
5 , one finds that Lemma 5.7(I) holds with u = s−6

by virtue of conditions (D1), (C1), (C2), (C3).

(b) s = 18, 19. With process Ms
4 , one finds that Lemma 5.7(I) holds with u =

s− 5 by virtue of conditions (D1), (C1), (C2), (C3).

(c) s>20. One finds that process Ds applies.

Table of permissible exponents for k = 8

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0469787 0.02348931

4 A4,2
1 4.2164889 0.05740233

5 B5,2
2,6 5.4915710 0.07270549 0.0222 0.0949

6 A6,2
2 6.8566563 0.08097841 0.0563 0.1373

7 B7,2
3,7 8.3105992 0.08825831 0.0264 0.1881 0.9864

8 A8,2
3 9.8428621 0.09355343 0.0559 0.2322 1.3410

9 A9,2
3 11.4529104 0.09907986 0.0750 0.2646 1.5885

10 A10,2
4 13.1283069 0.10315980 0.0550 0.3379 1.7214

11 A11,2
4 14.8664781 0.10742204 0.0741 0.3750 1.8485

12 A12,2
5 16.6561197 0.11069450 0.0528 0.4510 1.9401

13 A13,2
5 18.4901012 0.11356143 0.0686 0.4849 2.0172

14 A14,2
5 20.3623532 0.11614698 0.0820 0.5156 2.0883

15 M15
5 22.2661078 0.11832893 0.0938 0.5428 2.1728

16 M16
5 24.1891161 0.11934590 0.0938 0.5484 2.2022

17 M17
5 26.1294925 0.12039309 0.0938 0.5527 2.2249

18 M18
4 28.0833353 0.12119204 0.1075 0.4620 2.2385

19 M19
4 30.0473193 0.12176644 0.1075 0.4638 2.2447

20 D20 32.0186056
s>21 Ds 2s− 8

σ(8) = 0.014356 (s = 16, t = 6, w = 10),

τ(8) = 0.017327 (s = 7).

11. Permissible exponents for ninth powers

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents λs listed in the table improve
those provided by [18] for 56s625. For s = 3, 4, the exponents recorded in the table
were established earlier by Vaughan [14]. Broadly speaking, we may again follow
the discussion of [18] for 56s617, though the improvements contained in Theorem
3.4 lead to sharper estimates, and permit slightly more powerful processes. We note
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in particular that when k>9 and 16j63, then in view of the inequality 06φi61/k
(16i6j), one has

φ1 + · · ·+ φj6 3
k6 1

3 . (11.1)

Thus, for 16j63, the condition (δ) of Theorem 3.4 is automatically satisfied. Com-
bining the latter observation with the methods of [18], it follows that one may take
τj,l = 0 (l = 1, 2) for 36s611 (in which interval our methods make use of a choice
of j with 16j64). When j = 5 and 6, it follows from Theorem 3.4(Ib) case (iii)
that one may take τj,l = 0 (l = 1, 2) provided only that

I∑
i=1

φi + 9(φI−1 + φI)62,

when I = 3, 4, 5. The computational verification of this inequality leads to the
conclusion that one may take τj,l = 0 (l = 1, 2) also for 126s614. Finally, when
j = 6 and 156s617, it follows as in §11 of [18] that one may take τj,l = 0.002565
(l = 1, 2) whenever φ160.107131.

As in the previous cases, our computations for s>18 depend on first obtaining
preliminary estimates by applying the process Ms

4 for 186s623 (noting (5.26) and
checking (D1) or (D2)), and Ds for s>24. In this way we obtain the preliminary
permissible exponents

λ18 = 27.260, λ19 = 29.199, λ20 = 31.150,

λ21 = 33.120, λ22 = 35.080, λ23 = 37.055,

and by virtue of the preliminary exponent

σ(9) = 0.01212 (s = 19, t = 6, w = 12),

we have also

λs = max{2s− 9, 37.055 + 2(s− 23)(1− 0.01212)}

for s > 23. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) s = 18, 19. With process Ms
6 , one finds that Lemma 5.7(I) holds with u =

s− 7, by virtue of conditions (D1), (C1), (C2), (C3).

(b) 206s622. With process Ms
5 , one finds that Lemma 5.7(I) holds with u =

s− 6, by virtue of conditions (D1), (C1), (C2), (C3).

(c) s>23. One finds that process Ds applies.
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Table of permissible exponents for k = 9

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0358052 0.01790259

4 A4,2
1 4.1822894 0.04941786

5 B5,2
2,6 5.4197057 0.06218814 0.0116 0.0737

6 B6,2
2,6 6.7383084 0.06955946 0.0463 0.1158

7 A7,2
2 8.1356346 0.07551302 0.0626 0.1381

8 B8,2
3,7 9.6039271 0.07985390 0.0450 0.1956 1.2367

9 A9,2
3 11.1425026 0.08420410 0.0620 0.2231 1.4729

10 A10,2
4 12.7463430 0.08805551 0.0451 0.2870 1.6267

11 A11,2
4 14.4105835 0.09157319 0.0625 0.3194 1.7451

12 A12,2
5 16.1292111 0.09468812 0.0451 0.3870 1.8387

13 A13,2
5 17.8959526 0.09741610 0.0607 0.4194 1.9155

14 B14,2
6,11 19.7055987 0.09990639 0.0420 0.4882 1.9858

15 A15,2
6 21.5507274 0.10189148 0.0553 0.5185 2.0414

16 A16,2
6 23.4269614 0.10370526 0.0673 0.5468 2.1092

17 A17,2
6 25.3292029 0.10524175 0.0775 0.5717 2.1717

18 M18
6 27.2520471 0.10643130 0.0834 0.5885 2.2317

19 M19
6 29.1901860 0.10724097 0.0834 0.5937 2.2558

20 M20
5 31.1420569 0.10804665 0.0958 0.5163 2.2898

21 M21
5 33.1033373 0.10852186 0.0958 0.5185 2.2962

22 M22
5 35.0727119 0.10895936 0.0958 0.5203 2.3010

s>23 Ds

σ(9) = 0.012183 (s = 19, t = 6, w = 12),

τ(9) = 0.014871 (s = 8), G(9)650 (v = 22).

12. Permissible exponents for tenth powers

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents λs listed in the table improve
on those previously available for s>3. Our strategy is similar to that described in
previous sections. Note first that for 36s611, the condition (δ) of Theorem 3.4 is
satisfied. Since when j = 5, 6, one of the conditions (α) and (β) of Theorem 3.4 is
satisfied, and one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied for
36s615, we deduce that one may take τj,l = 0 (l = 1, 2) for 36s615.

In order to discuss permissible exponents for 166s620, we apply case (Ic) of
Theorem 3.4. In the notation of the latter theorem, we find from §22 that when
j = 6 or 7 and 86j + l69, one has J = 1, and hence one may take

δ3 = 0.0035377, δ4 = 0.0372112, δ6 = 0.2457501,
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δ7 = 0.4042791 and δ8 = 0.5946271

(note that §22 is independent of §§9–21). Thus we deduce that one may take

τ6,l = 1
3δ3 < 0.00118 whenever φ160.097668 (l = 2, 3),

and that one may take

τ7,l = 1
7 (δ3 + δ4) < 0.00583 whenever φ160.095055 (l = 2),

and otherwise, one may take

τ7,l = 1
7δ7 < 0.05776.

As in the previous cases, our computations for s>21 depend on first obtaining
preliminary estimates by applying the process Ms

5 for 216s626 (noting (5.26) and
checking (D1) or (D2)), and Ds for s>27. In this way we obtain the preliminary
permissible exponents

λ21 = 32.249, λ22 = 34.198, λ23 = 36.156,

λ24 = 38.122, λ25 = 40.094, λ26 = 42.072,

and by virtue of the preliminary exponent

σ(10) = 0.01054 (s = 22, t = 7, w = 13),

we have also

λs = max{2s− 10, 42.072 + 2(s− 26)(1− 0.01054)}

for s > 26. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) s = 21, 22. With process Ns
7 , one finds that Lemma 5.7(I ′) holds with u =

s− 8, by virtue of condition (A1).

(b) 236s625. With process Ms
6 , one finds that Lemma 5.7(I) holds with u =

s− 7, by virtue of conditions (D1), (C1), (C2), (C3).

(c) s = 26. With process Ms
6 , one finds that Lemma 5.7(II) holds with u = 19,

by virtue of conditions (D2), (C1), (C4), (C5).

(d) s>27. One finds that process Ds applies.
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Table of permissible exponents for k = 10

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0281105 0.01405522

4 A4,2
1 4.1568114 0.04330611

5 B5,2
2,6 5.3659530 0.05441877 0.0042 0.0586

6 B6,2
2,6 6.6465971 0.06056135 0.0375 0.0981

7 A7,2
2 7.9967162 0.06540123 0.0525 0.1179

8 B8,2
3,7 9.4143540 0.06956822 0.0361 0.1670 1.1412

9 A9,2
3 10.8945712 0.07291878 0.0516 0.1912 1.3731

10 A10,2
4 12.4375675 0.07641992 0.0368 0.2472 1.5499

11 A11,2
4 14.0371956 0.07929039 0.0525 0.2751 1.6556

12 A12,2
5 15.6914013 0.08215771 0.0377 0.3350 1.7513

13 A13,2
5 17.3943657 0.08460686 0.0524 0.3645 1.8239

14 B14,2
6,11 19.1426918 0.08695770 0.0366 0.4265 1.8937

15 A15,2
6 20.9303709 0.08892986 0.0502 0.4559 1.9503

16 B16,3
6,13 22.7537459 0.09078376 0.0627 0.4843 2.0175

17 A17,2
7 24.6071999 0.09230268 0.0456 0.5472 2.0724

18 A18,2
7 26.4867878 0.09364492 0.0558 0.5724 2.1251

19 A19,2
7 28.3886784 0.09480400 0.0647 0.5951 2.1845

20 A20,2
7 30.3094873 0.09580462 0.0734 0.6171 2.2431

21 N21
7 32.2449884 0.09653784 0.0750 0.6258 2.2800

22 N22
7 34.1926960 0.09715085 0.0750 0.6306 2.3008

23 M23
6 36.1509648 0.09770971 0.0863 0.5616 2.3354

24 M24
6 38.1169804 0.09808226 0.0863 0.5639 2.3420

25 M25
6 40.0895832 0.09841150 0.0863 0.5658 2.3469

26 M26
6 42.0677228 0.09869813 0.0867 0.5681 2.3577

s>27 Ds

σ(10) = 0.010569 (s = 22, t = 7, w = 13),

τ(10) = 0.013036 (s = 9), G(10)659 (v = 26).

13. Permissible exponents for eleventh powers

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents λs listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 36s613, the condition (δ) of Theorem 3.4 is
satisfied. Since when j = 6, 7, one of the conditions (α), (β) and (γ) of Theorem
3.4 is satisfied, and one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied
for 36s617, we deduce that one may take τj,l = 0 (l = 1, 2, 3) for 36s617.
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In order to discuss permissible exponents for 186s622, we apply case (Ic) of
Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
j = 7 or 8 and l = 2, one has J = 1, and hence one may take

δ3 = 0.0025439, δ4 = 0.0292912, δ8 = 0.5257736.

Thus we deduce that one may take

τ7,l = 1
7 (δ3 + δ4) < 0.00455 whenever φ160.087205 (l = 2),

and that one may take

τ8,l = 1
4δ4 < 0.00733 whenever φ160.087205 (l = 2).

As in the previous cases, our computations for s>23 depend on first obtaining
preliminary estimates by applying the process Ms

6 for 236s629 (noting (5.26) and
checking (D1) or (D2)), and Ds for s>30. In this way we obtain the preliminary
permissible exponents

λ23 = 35.299, λ24 = 37.244, λ25 = 39.199, λ26 = 41.161,

λ27 = 43.130, λ28 = 45.105, λ29 = 47.084,

and by virtue of the preliminary exponent

σ(11) = 0.00930 (s = 25, t = 7, w = 15),

we have also

λs = max{2s− 11, 47.084 + 2(s− 29)(1− 0.00930)}

for s > 29. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) s = 23, 24. With process Ns
8 , one finds that Lemma 5.7(I ′) holds with u =

s− 9, by virtue of condition (A1).

(b) 256s628. With process Ms
7 , one finds that Lemma 5.7(I) holds with u =

s− 8, by virtue of conditions (D1), (C1), (C2), (C3).

(c) s = 29. With process Ns
6 , one finds that Lemma 5.7(I ′) holds with u = s−7,

by virtue of condition (A1).

(d) s>30. One finds that process Ds applies.
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Table of permissible exponents for k = 11

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0221905 0.01109521

4 B4,2
1,5 4.1346363 0.03776126

5 A5,2
1 5.3216133 0.04837243

6 B6,2
2,6 6.5727501 0.05368021 0.0312 0.0848

7 A7,2
2 7.8855603 0.05763697 0.0449 0.1026

8 B8,2
3,8 9.2614256 0.06147175 0.0287 0.1442 1.0534

9 A9,2
3 10.6937742 0.06416025 0.0434 0.1662 1.2881

10 B10,2
4,9 12.1849727 0.06723014 0.0289 0.2140 1.4815

11 A11,2
4 13.7292224 0.06964143 0.0441 0.2396 1.5798

12 B12,2
5,10 15.3262982 0.07219102 0.0301 0.2917 1.6759

13 A13,2
5 16.9712740 0.07435992 0.0446 0.3191 1.7442

14 B14,2
6,11 18.6621448 0.07651920 0.0307 0.3745 1.8126

15 A15,2
6 20.3940119 0.07837637 0.0441 0.4022 1.8679

16 B16,3
6,13 22.1640483 0.08016212 0.0566 0.4295 1.9304

17 A17,2
7 23.9674841 0.08168359 0.0422 0.4874 1.9847

18 A18,2
7 25.8009828 0.08307973 0.0533 0.5133 2.0398

19 A19,2
8 27.6607360 0.08429767 0.0378 0.5710 2.0979

20 A20,2
8 29.5431019 0.08534127 0.0466 0.5939 2.1448

21 A21,2
8 31.4450976 0.08625844 0.0548 0.6151 2.1947

22 A22,2
8 33.3638548 0.08704554 0.0617 0.6340 2.2473

23 N23
8 35.2968576 0.08772003 0.0682 0.6516 2.2983

24 N24
8 37.2413126 0.08824091 0.0682 0.6568 2.3214

25 M25
7 39.1958837 0.08872562 0.0786 0.5959 2.3658

26 M26
7 41.1582991 0.08907859 0.0786 0.5988 2.3733

27 M27
7 43.1274069 0.08938707 0.0786 0.6012 2.3800

28 M28
7 45.1020502 0.08964222 0.0786 0.6031 2.3893

29 N29
6 47.0818525 0.08990704 0.0848 0.5283 2.4164

s>30 Ds

σ(11) = 0.009322 (s = 25, t = 7, w = 15),

τ(11) = 0.011604 (s = 10), G(11)667 (v = 29).

14. Permissible exponents for twelfth powers

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents λs listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 36s614, the condition (δ) of Theorem 3.4 is
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satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied in
this range of s, we deduce that one may take τj,l = 0 (l = 1, 2) for 36s614. When
j = 6 and s = 15, 16, meanwhile, we must resort to Theorem 3.4(II)(1). Here we
note that condition (iii) is satisfied, and thus the estimate (4.1) holds for j = 6 and
l = 2, 3 with χj,l = 1

3 and τj,l = 1. Next, when j = 7 and s = 17, 18, we may apply
case (β) of Theorem 3.4(Ib) in combination with the condition (iii) to deduce that
one may take τ7,2 = 0.

In order to discuss permissible exponents for 196s625, we apply case (Ic) of
Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
j = 8 or 9 and 106j + l611, one has J = 1, and hence one may take

δ4 = 0.0234059, δ5 = 0.0866022, δ8 = 0.4689321,

δ9 = 0.6501924, δ10 = 0.8586937.

Thus we deduce that one may take

τ8,l = 1
4δ4 < 0.00586 whenever φ160.080502 (l = 2, 3),

and that one may take

τ9,l = 1
9 (δ4 + δ5) < 0.01223 whenever φ160.078831 (l = 2),

and otherwise, one may take

τ9,l = 1
9δ9 < 0.07225 (l = 2).

As in the previous cases, our computations for s>26 depend on first obtaining
preliminary estimates by applying the process Ms

7 for 266s633 (noting (5.26) and
checking (D1) or (D2)), and Ds for s>34. In this way we obtain the preliminary
permissible exponents

λ26 = 40.290, λ27 = 42.241, λ28 = 44.200, λ29 = 46.166,

λ30 = 48.138, λ31 = 50.114, λ32 = 52.094, λ33 = 54.077,

and by virtue of the preliminary exponent

σ(12) = 0.00834 (s = 28, t = 8, w = 17),

we have also

λs = max{2s− 12, 54.077 + 2(s− 33)(1− 0.00834)}

for s > 33. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.



50 R. C. VAUGHAN AND T. D. WOOLEY

(a) s = 26, 27. With process Ns
9 , one finds that Lemma 5.7(I ′) holds with u =

s− 10, by virtue of condition (A1).

(b) 286s632. With process Ms
8 , one finds that Lemma 5.7(I) holds with u =

s− 9, by virtue of conditions (D1), (C1), (C2), (C3).

(c) s>33. One finds that process Ds applies.

Table of permissible exponents for k = 12

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0173811 0.00869053

4 B4,2
1,5 4.1139674 0.03238304

5 A5,2
1 5.2806367 0.04288933

6 B6,2
2,7 6.5078011 0.04813455 0.0252 0.0733

7 A7,2
2 7.7910496 0.05157287 0.0392 0.0907

8 B8,2
3,8 9.1322748 0.05495699 0.0221 0.1252 0.9671

9 A9,2
3 10.5253191 0.05723065 0.0371 0.1466 1.2185

10 B10,2
4,9 11.9729266 0.05988316 0.0222 0.1871 1.4243

11 A11,2
4 13.4700805 0.06193465 0.0373 0.2112 1.5174

12 B12,2
5,10 15.0174771 0.06417372 0.0238 0.2566 1.6127

13 A13,2
5 16.6110110 0.06607653 0.0378 0.2819 1.6761

14 A14,2
5 18.2496682 0.06802194 0.0503 0.3060 1.7421

15 A15,2
6 19.9296021 0.06973444 0.0387 0.3580 1.7957

16 B16,3
6,13 21.6486622 0.07140335 0.0515 0.3844 1.8541

17 A17,2
7 23.4028589 0.07285983 0.0378 0.4355 1.9056

18 A18,2
7 25.1895563 0.07423677 0.0490 0.4606 1.9583

19 A19,2
8 27.0053277 0.07546142 0.0357 0.5142 2.0143

20 A20,2
8 28.8470137 0.07655400 0.0453 0.5376 2.0630

21 B21,3
8,17 30.7117485 0.07753392 0.0540 0.5596 2.1187

22 A22,2
9 32.5965148 0.07837940 0.0396 0.6128 2.1644

23 A23,2
9 34.4988383 0.07912700 0.0477 0.6340 2.2080

24 A24,2
9 36.4163328 0.07977408 0.0540 0.6516 2.2565

25 A25,2
9 38.3468951 0.08033400 0.0596 0.6676 2.3037

26 N26
9 40.2885464 0.08080691 0.0625 0.6782 2.3393

27 N27
9 42.2395410 0.08120210 0.0625 0.6830 2.3609

28 M28
8 44.1986746 0.08155581 0.0721 0.6272 2.3983

29 M29
8 46.1643984 0.08183181 0.0721 0.6300 2.4054

30 M30
8 48.1357634 0.08207146 0.0721 0.6323 2.4160

31 M31
8 50.1118679 0.08227285 0.0721 0.6343 2.4251

32 M32
8 52.0919461 0.08244173 0.0721 0.6360 2.4327

s>33 Ds
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σ(12) = 0.008349 (s = 28, t = 8, w = 17),

τ(12) = 0.010475 (s = 11), G(12)676 (v = 32).

15. Permissible exponents for thirteenth powers

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents λs listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 36s615, the condition (δ) of Theorem 3.4 is
satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied in
this range of s, we deduce that one may take τj,l = 0 (l = 1, 2) for 36s615. When
j = 6 or 7 and s = 16, 17, 18, meanwhile, we must resort to Theorem 3.4(II)(1).
Here we note that condition (iii) is satisfied, and thus the estimate (4.1) holds for
j = 6 and l = 2, 3, and likewise for j = 7 and l = 2 with χj,l = 1

3 and τj,l = 1.
Next, when j = 8 and s = 19, 20, we may apply case (β) of Theorem 3.4(Ib) in
combination with the condition (iii) to deduce that one may take τ8,2 = 0.

In order to discuss permissible exponents for 216s628, we apply case (Ic) of
Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
j = 9 or 10 and 116j + l612, one has J = 1, and hence one may take

δ4 = 0.0190100, δ5 = 0.0738636, δ8 = 0.4222375, δ10 = 0.7792591.

Thus we deduce that one may take

τ9,l = 1
9 (δ4 + δ5) < 0.01032 whenever φ160.073360 (l = 2, 3),

and that one may take

τ10,l = 1
5δ5 < 0.01478 whenever φ160.073360 (l = 2),

and otherwise, one may take

τ10,l = 1
10δ10 < 0.07793 (l = 2).

As in the previous cases, our computations for s>29 depend on first obtaining
preliminary estimates by applying the process Ms

8 for 296s636 (noting (5.26) and
checking (D1) or (D2)), and Ds for s>37. In this way we obtain the preliminary
permissible exponents

λ29 = 45.284, λ30 = 47.240, λ31 = 49.203, λ32 = 51.171,

λ33 = 53.144, λ34 = 55.122, λ35 = 57.102, λ36 = 59.086,

and by virtue of the preliminary exponent

σ(13) = 0.00755 (s = 31, t = 9, w = 18),

we have also

λs = max{2s− 13, 59.086 + 2(s− 36)(1− 0.00755)}
for s > 36. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.
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Table of permissible exponents for k = 13

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0139128 0.00695637

4 B4,2
1,5 4.0980713 0.02818356

5 A5,2
1 5.2480334 0.03843282

6 B6,2
2,7 6.4550068 0.04355532 0.0200 0.0636

7 B7,2
2,7 7.7136017 0.04663575 0.0344 0.0811

8 B8,2
3,9 9.0257224 0.04965016 0.0166 0.1095 0.8876

9 A9,2
3 10.3855801 0.05159785 0.0320 0.1307 1.1586

10 A10,2
3 11.7953083 0.05380951 0.0428 0.1471 1.3592

11 A11,2
4 13.2521623 0.05568206 0.0317 0.1880 1.4644

12 A12,2
4 14.7557170 0.05756333 0.0429 0.2072 1.5517

13 A13,2
5 16.3039366 0.05930365 0.0319 0.2510 1.6178

14 A14,2
5 17.8953488 0.06099508 0.0433 0.2724 1.6782

15 A15,2
6 19.5276970 0.06257992 0.0324 0.3188 1.7316

16 B16,3
6,13 21.1988910 0.06409230 0.0444 0.3427 1.7823

17 A17,2
7 22.9062626 0.06549065 0.0345 0.3928 1.8359

18 A18,2
7 24.6473038 0.06679816 0.0460 0.4176 1.8877

19 A19,2
8 26.4190897 0.06798261 0.0323 0.4638 1.9380

20 A20,2
8 28.2190701 0.06907751 0.0421 0.4868 1.9866

21 A21,2
9 30.0445818 0.07007187 0.0302 0.5371 2.0395

22 A22,2
9 31.8929000 0.07095680 0.0390 0.5591 2.0860

23 B23,3
9,18 33.7616279 0.07175359 0.0470 0.5797 2.1319

24 A24,2
10 35.6483904 0.07245756 0.0336 0.6289 2.1808

25 A25,2
10 37.5510006 0.07307633 0.0401 0.6470 2.2212

26 A26,2
10 39.4675269 0.07362249 0.0470 0.6654 2.2610

27 A27,2
10 41.3961543 0.07409771 0.0521 0.6805 2.3067

28 A28,2
10 43.3352806 0.07451110 0.0566 0.6939 2.3485

29 N29
10 45.2834077 0.07486365 0.0577 0.7010 2.3754

30 N30
10 47.2392765 0.07516706 0.0577 0.7053 2.3948

31 M31
9 49.2018815 0.07543499 0.0666 0.6538 2.4262

32 M32
9 51.1701090 0.07565390 0.0666 0.6565 2.4365

33 M33
9 53.1431803 0.07584409 0.0666 0.6588 2.4467

34 M34
9 55.1203776 0.07600614 0.0666 0.6607 2.4555

35 M35
9 57.1010835 0.07614400 0.0666 0.6624 2.4629

36 N36
8 59.0849135 0.07627230 0.0718 0.5990 2.4879

s>37 Ds

σ(13) = 0.007556 (s = 31, t = 9, w = 18),

τ(13) = 0.009545 (s = 12), G(13)684 (v = 36).
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(a) s = 29, 30. With process Ns
10, one finds that Lemma 5.7(I ′) holds with

u = s− 11, by virtue of condition (A1).

(b) 316s635. With process Ms
9 , one finds that Lemma 5.7(I) holds with u =

s− 10, by virtue of conditions (D1), (C1), (C2), (C3).

(c) s = 36. With process Ns
8 , one finds that Lemma 5.7(I ′) holds with u = s−9,

by virtue of condition (A1).

(d) s>37. One finds that process Ds applies.

16. Permissible exponents for fourteenth powers

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents λs listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 36s616, the condition (δ) of Theorem 3.4 is
satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied
in this range of s, we deduce that one may take τj,l = 0 (l = 1, 2) for 36s616.
When j = 7 or 8 and 176s620, meanwhile, we must resort to Theorem 3.4(II)(1).
Here we note that condition (iii) is satisfied, and thus the estimate (4.1) holds for
j = 7, 8 with χj,2 = 1

3 and τj,2 = 1. Next, when j = 9 and s = 21, we may apply
case (β) of Theorem 3.4(Ib) in combination with the condition (iii) to deduce that
one may take τ9,2 = 0.

In order to discuss permissible exponents for 226s630, we apply case (Ic) of
Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
j = 9 and l = 2, one has J = 2, and hence one may take

δ4 = 0.0018248, δ5 = 0.0107720, δ8 = 0.1314920, δ10 = 0.2835673,

whence we may take

τ9,l = 1
9 (δ4 + δ5) < 0.00140 whenever φ160.070116 (l = 2).

Also from §23, we find that when j = 9, 10, 11 and 126j + l613, one has J = 1,
and hence one may take

δ4 = 0.0156211, δ5 = 0.0633584, δ6 = 0.1434849,

δ8 = 0.3829073, δ10 = 0.7106189, δ11 = 0.9079284.

Thus we deduce that one may take

τ9,l = 1
9 (δ4 + δ5) < 0.00878 whenever φ160.068568 (l = 2, 3),

that one may take

τ10,l = 1
5δ5 < 0.01268 whenever φ160.068568 (l = 2, 3),

and that one may take

τ11,l = 1
11δ11 < 0.08254 (l = 2).
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Table of permissible exponents for k = 14

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0113494 0.00567466

4 B4,2
1,5 4.0856057 0.02484611

5 A5,2
1 5.2216967 0.03476683

6 B6,2
2,7 6.4118310 0.03979118 0.0160 0.0557

7 B7,2
2,7 7.6492691 0.04248943 0.0303 0.0728

8 A8,2
2 8.9350975 0.04500717 0.0383 0.0834

9 A9,2
3 10.2671180 0.04699577 0.0277 0.1175 1.1041

10 A10,2
3 11.6442024 0.04876376 0.0373 0.1317 1.2919

11 B11,2
4,10 13.0662900 0.05051435 0.0268 0.1686 1.4194

12 A12,2
4 14.5316795 0.05209364 0.0370 0.1855 1.4979

13 B13,2
5,11 16.0399382 0.05367993 0.0268 0.2251 1.5676

14 A14,2
5 17.5892784 0.05515430 0.0373 0.2442 1.6228

15 A15,2
6 19.1785686 0.05660418 0.0273 0.2865 1.6759

16 A16,2
6 20.8058286 0.05796461 0.0383 0.3079 1.7234

17 A17,2
7 22.4692736 0.05926701 0.0287 0.3527 1.7725

18 A18,2
7 24.1667258 0.06048642 0.0398 0.3756 1.8209

19 A19,2
8 25.8960050 0.06162954 0.0306 0.4230 1.8711

20 A20,2
8 27.6547883 0.06268866 0.0409 0.4458 1.9192

21 A21,2
9 29.4407200 0.06366289 0.0276 0.4884 1.9661

22 A22,2
9 31.2515093 0.06455699 0.0367 0.5102 2.0125

23 B23,3
9,18 33.0849211 0.06537338 0.0449 0.5306 2.0596

24 A24,2
10 34.9387022 0.06610731 0.0337 0.5776 2.1056

25 A25,2
10 36.8107871 0.06676863 0.0408 0.5967 2.1481

26 B26,3
10,20 38.6992193 0.06736052 0.0469 0.6137 2.1932

27 A27,2
11 40.6021475 0.06788535 0.0357 0.6616 2.2350

28 A28,2
11 42.5178927 0.06835016 0.0410 0.6774 2.2719

29 A29,2
11 44.4449274 0.06876037 0.0458 0.6916 2.3080

30 A30,2
11 46.3818646 0.06912079 0.0500 0.7046 2.3493

31 N31
11 48.3274553 0.06943614 0.0536 0.7161 2.3867

32 N32
11 50.2805449 0.06970829 0.0536 0.7206 2.4066

33 N33
11 52.2401670 0.06994609 0.0536 0.7245 2.4242

34 N34
10 54.2054937 0.07015541 0.0619 0.6767 2.4527

35 N35
10 56.1756866 0.07033184 0.0619 0.6793 2.4637

36 N36
10 58.1501035 0.07048574 0.0619 0.6815 2.4733

37 N37
10 60.1281620 0.07061847 0.0619 0.6834 2.4817
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s Process λs φ1 φj
∑j
i=1 φi φ∗s

38 M38
10 62.1093556 0.07073278 0.0619 0.6851 2.4889

39 N39
9 64.0933213 0.07083658 0.0667 0.6264 2.5149

40 N40
9 66.0795485 0.07091753 0.0667 0.6274 2.5175

s>41 Ds

σ(14) = 0.006895 (s = 34, t = 10, w = 19),

τ(14) = 0.008770 (s = 13), G(14)692 (v = 40).

As in the previous cases, our computations for s>31 depend on first obtaining
preliminary estimates by applying the process Ms

9 for 316s640 (noting (5.26) and
checking (D1) or (D2)), and Ds for s>41. In this way we obtain the preliminary
permissible exponents

λ31 = 48.328, λ32 = 50.281, λ33 = 52.241, λ34 = 54.206, λ35 = 56.177,

λ36 = 58.151, λ37 = 60.129, λ38 = 62.110, λ39 = 64.094, λ40 = 66.080,

and by virtue of the preliminary exponent

σ(14) = 0.00689 (s = 34, t = 10, w = 19),

we have also

λs = max{2s− 14, 66.080 + 2(s− 40)(1− 0.00689)}

for s > 40. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) 316s633. With process Ns
11, one finds that Lemma 5.7(I ′) holds with u =

s− 12, by virtue of condition (A1).

(b) 346s637. With process Ns
10, one finds that Lemma 5.7(I ′) holds with u =

s− 11, by virtue of condition (A1).

(c) s = 38. With processMs
10, one finds that Lemma 5.7(I) holds with u = s−11,

by virtue of conditions (D1), (C1), (C2), (C3).

(d) s = 39, 40. With process Ns
9 , one finds that Lemma 5.7(I ′) holds with u =

s− 10, by virtue of condition (A1).

(e) s>41. One finds that process Ds applies.
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17. Permissible exponents for fifteenth powers

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents λs listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 36s617, the condition (δ) of Theorem 3.4 is
satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied
in this range of s, we deduce that one may take τj,l = 0 (l = 1, 2) for 36s617.
When j = 7, 8, 9 and 186s622, meanwhile, we must resort to Theorem 3.4(II)(1).
Here we note that condition (iii) is satisfied, and thus the estimate (4.1) holds for
j = 7, 8, 9 with χj,2 = 1

3 and τj,2 = 1. Next, when j = 10 and s = 23, we may apply
case (β) of Theorem 3.4(Ib) in combination with the condition (iii) to deduce that
one may take τ10,2 = 0.

In order to discuss permissible exponents for 246s633, we apply case (Ic) of
Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
j = 10 and l = 2, one has J = 2, and hence one may take

δ5 = 0.0088563 and δ10 = 0.2565541,

whence we may take

τ10,l = 1
5δ5 < 0.00178 whenever φ160.065621 (l = 2).

Further, when j = 11, 12 and 136j+ l614, one has J = 1, and hence one may take

δ5 = 0.0536213, δ6 = 0.1264298, δ12 = 1.0354619.

Thus we deduce that one may take

τ11,l = 1
11 (δ5 + δ6) < 0.01637 whenever φ160.063360 (l = 2, 3),

and that one may take

τ12,l = 1
12δ12 < 0.08629 (l = 2).

As in the previous cases, our computations for s>34 depend on first obtaining
preliminary estimates by applying the process Ms

10 for 346s644 (noting (5.26) and
checking (D1) or (D2)), and Ds for s>45. In this way we obtain the preliminary
permissible exponents

λ34 = 53.323, λ35 = 55.280, λ36 = 57.243, λ37 = 59.210,

λ38 = 61.182, λ39 = 63.157, λ40 = 65.136, λ41 = 67.118,

λ42 = 69.102, λ43 = 71.088, λ44 = 73.076,
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and by virtue of the preliminary exponent

σ(15) = 0.00633 (s = 37, t = 11, w = 21),

we have also

λs = max{2s− 15, 73.076 + 2(s− 44)(1− 0.00633)}
for s > 44. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) s = 34, 35. With process Ns
12, one finds that Lemma 5.7(I ′) holds with

u = s− 13, by virtue of condition (A1).

(b) 366s640. With process Ns
11, one finds that Lemma 5.7(I ′) holds with u =

s− 12, by virtue of condition (A1).

(c) s = 41. With processMs
11, one finds that Lemma 5.7(I) holds with u = s−12,

by virtue of conditions (D1), (C1), (C2), (C3).

(d) s = 42, 43. With process Ns
10, one finds that Lemma 5.7(I ′) holds with

u = s− 11, by virtue of condition (A1).

(e) s>44. One finds that process Ds applies.

Table of permissible exponents for k = 15

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0092359 0.00461792

4 B4,2
1,6 4.0742295 0.02173146

5 A5,2
1 5.1987873 0.03172823

6 B6,2
2,8 6.3738989 0.03647237 0.0116 0.0481

7 B7,2
2,7 7.5936427 0.03905794 0.0269 0.0659

8 A8,2
2 8.8571841 0.04113748 0.0342 0.0753

9 B9,2
3,9 10.1649995 0.04309441 0.0236 0.1058 1.0461

10 A10,2
3 11.5141981 0.04456907 0.0327 0.1189 1.2336

11 B11,2
4,10 12.9059619 0.04616698 0.0222 0.1517 1.3792

12 A12,2
4 14.3381411 0.04752336 0.0321 0.1674 1.4522

13 B13,2
5,11 15.8111209 0.04895330 0.0223 0.2032 1.5241

14 A14,2
5 17.3230870 0.05024754 0.0321 0.2205 1.5749

15 A15,2
6 18.8736139 0.05156238 0.0229 0.2592 1.6271

16 A16,2
6 20.4609219 0.05278515 0.0331 0.2784 1.6717

17 A17,2
7 22.0838491 0.05398415 0.0239 0.3190 1.7169

18 A18,2
7 23.7405373 0.05510909 0.0340 0.3394 1.7623

19 A19,2
8 25.4293639 0.05618735 0.0257 0.3830 1.8090

20 A20,2
8 27.1483206 0.05719334 0.0356 0.4044 1.8549

21 A21,2
9 28.8955107 0.05813950 0.0271 0.4492 1.9020

22 A22,2
9 30.6688816 0.05901573 0.0367 0.4710 1.9480
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s Process λs φ1 φj
∑j
i=1 φi φ∗s

23 A23,2
10 32.4664265 0.05982581 0.0239 0.5104 1.9912

24 A24,2
10 34.2861492 0.06056957 0.0320 0.5305 2.0351

25 A25,2
10 36.1261310 0.06125062 0.0397 0.5499 2.0782

26 A26,2
11 37.9844896 0.06186873 0.0290 0.5938 2.1226

27 A27,2
11 39.8594364 0.06242704 0.0358 0.6119 2.1634

28 B28,3
11,22 41.7493055 0.06293025 0.0417 0.6284 2.2023

29 A29,2
12 43.6525286 0.06338099 0.0310 0.6730 2.2453

30 A30,2
12 45.5676489 0.06378269 0.0359 0.6878 2.2808

31 A31,2
12 47.4933457 0.06414041 0.0405 0.7015 2.3144

32 A32,2
12 49.4284091 0.06445755 0.0444 0.7139 2.3488

33 A33,2
12 51.3717431 0.06473789 0.0479 0.7251 2.3859

34 N34
12 53.3223547 0.06498462 0.0500 0.7335 2.4158

35 N35
12 55.2793490 0.06520081 0.0500 0.7376 2.4338

36 N36
11 57.2419678 0.06539241 0.0578 0.6939 2.4654

37 N37
11 59.2094705 0.06555771 0.0578 0.6966 2.4771

38 N38
11 61.1812515 0.06570293 0.0578 0.6991 2.4875

39 N39
11 63.1567645 0.06582965 0.0578 0.7012 2.4965

40 N40
11 65.1355287 0.06594009 0.0578 0.7031 2.5045

41 M41
11 67.1171222 0.06603623 0.0578 0.7047 2.5115

42 N42
10 69.1012148 0.06612247 0.0623 0.6500 2.5383

43 N43
10 71.0874163 0.06619342 0.0623 0.6511 2.5409

s>44 Ds

σ(15) = 0.006338 (s = 37, t = 11, w = 21),

τ(15) = 0.008114 (s = 14), G(15)6100 (v = 43).

18. Permissible exponents for sixteenth powers

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents λs listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 36s618, the condition (δ) of Theorem 3.4 is
satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied
in this range of s, we deduce that one may take τj,l = 0 (l = 1, 2) for 36s618.
When j = 8, 9, 10 and 196s624, meanwhile, we must resort to Theorem 3.4(II)(1).
Here we note that condition (iii) is satisfied, and thus the estimate (4.1) holds for
j = 8, 9, 10 with χj,2 = 1

3 and τj,2 = 1.
In order to discuss permissible exponents for 256s636, we apply case (Ic) of

Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
j = 11 and l = 1 or 2, one has J = 2, and hence one may take

δ5 = 0.0073658, δ6 = 0.0241263 and δ12 = 0.4026992,
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whence we may take

τ11,l = 1
11 (δ5 + δ6) < 0.00287 whenever φ160.061146 (l = 1, 2).

Further, when j = 11, 12, 13 and 146j + l615, one has J = 1, and hence one may
take

δ5 = 0.0460456, δ6 = 0.1127790, δ12 = 0.9585035, δ13 = 1.1659645.

Thus we deduce that one may take

τ11,l = 1
11 (δ5 + δ6) < 0.01444 whenever φ160.059762 (l = 3),

that one may take

τ12,l = 1
6δ6 < 0.01880 whenever φ160.059762 (l = 2),

and that one may take

τ13,l = 1
13δ13 < 0.08969 (l = 2).

As in the previous cases, our computations for s>37 depend on first obtaining
preliminary estimates by applying the process Ms

10 for 376s647 (noting (5.27) and
checking (D1) or (D2)), and Ds for s>48. In this way we obtain the preliminary
permissible exponents

λ37 = 58.320, λ38 = 60.280, λ39 = 62.245, λ40 = 64.215,

λ41 = 66.188, λ42 = 68.164, λ43 = 70.143, λ44 = 72.125,

λ45 = 74.110, λ46 = 76.096, λ47 = 78.084,

and by virtue of the preliminary exponent

σ(16) = 0.00586 (s = 41, t = 11, w = 23),

we have also

λs = max{2s− 16, 78.084 + 2(s− 47)(1− 0.00586)}

for s > 47. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) s = 37, 38. With process Ns
13, one finds that Lemma 5.7(I ′) holds with

u = s− 14, by virtue of condition (A1).

(b) 396s643. With process Ns
12, one finds that Lemma 5.7(I ′) holds with u =

s− 13, by virtue of condition (A1).
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(c) s = 44. With processMs
12, one finds that Lemma 5.7(I) holds with u = s−13,

by virtue of conditions (D1), (C1), (C2), (C3).

(d) 456s647. With process Ns
11, one finds that Lemma 5.7(I ′) holds with u =

s− 12, by virtue of condition (A1).

(e) s>48. One finds that process Ds applies.

Table of permissible exponents for k = 16

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0074816 0.00374079

4 B4,2
1,6 4.0638321 0.01883046

5 A5,2
1 5.1787385 0.02919246

6 B6,2
2,8 6.3412246 0.03370200 0.0083 0.0420

7 B7,2
2,8 7.5457229 0.03613827 0.0241 0.0602

8 A8,2
2 8.7902441 0.03788514 0.0308 0.0687

9 B9,2
3,9 10.0769155 0.03976160 0.0200 0.0957 0.9893

10 A10,2
3 11.4019639 0.04102548 0.0289 0.1082 1.1825

11 B11,2
4,10 12.7671799 0.04247669 0.0185 0.1375 1.3449

12 A12,2
4 14.1702162 0.04365257 0.0280 0.1522 1.4130

13 B13,2
5,12 15.6119303 0.04493631 0.0182 0.1842 1.4861

14 A14,2
5 17.0906280 0.04608149 0.0276 0.2003 1.5333

15 B15,2
6,13 18.6062852 0.04726736 0.0188 0.2354 1.5841

16 A16,2
6 20.1573791 0.04836825 0.0285 0.2531 1.6259

17 B17,2
7,14 21.7431712 0.04946474 0.0198 0.2902 1.6685

18 A18,2
7 23.3621148 0.05049786 0.0293 0.3090 1.7107

19 A19,2
8 25.0129891 0.05150184 0.0211 0.3485 1.7539

20 A20,2
8 26.6941169 0.05244686 0.0306 0.3682 1.7972

21 A21,2
9 28.4039654 0.05334847 0.0229 0.4098 1.8413

22 A22,2
9 30.1407641 0.05419218 0.0322 0.4304 1.8854

23 A23,2
10 31.9028113 0.05498480 0.0243 0.4729 1.9297

24 A24,2
10 33.6883143 0.05572055 0.0329 0.4931 1.9734

25 B25,2
11,19 35.4955330 0.05640278 0.0205 0.5297 2.0143

26 A26,2
11 37.3227332 0.05703073 0.0279 0.5485 2.0548

27 A27,2
11 39.1682523 0.05760740 0.0351 0.5668 2.0961

28 B28,3
11,21 41.0304795 0.05813390 0.0408 0.5828 2.1367

29 A29,2
12 42.9078717 0.05861191 0.0313 0.6252 2.1765

30 A30,2
12 44.7989875 0.05904508 0.0369 0.6410 2.2140

31 B31,3
12,24 46.7024729 0.05943588 0.0414 0.6547 2.2506

32 A32,2
13 48.6170673 0.05978708 0.0316 0.6971 2.2884

33 A33,2
13 50.5416092 0.06010180 0.0358 0.7101 2.3210
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s Process λs φ1 φj
∑j
i=1 φi φ∗s

34 A34,2
13 52.4750359 0.06038318 0.0396 0.7220 2.3515

35 A35,2
13 54.4163771 0.06063404 0.0429 0.7329 2.3839

36 A36,2
13 56.3647518 0.06085714 0.0459 0.7428 2.4179

37 N37
13 58.3193587 0.06105480 0.0469 0.7488 2.4413

38 N38
13 60.2794807 0.06122977 0.0469 0.7526 2.4577

39 N39
12 62.2444892 0.06138528 0.0543 0.7115 2.4878

40 N40
12 64.2137908 0.06152144 0.0543 0.7141 2.4987

41 N41
12 66.1868812 0.06164181 0.0543 0.7164 2.5084

42 N42
12 68.1633061 0.06174778 0.0543 0.7185 2.5169

43 N43
12 70.1426626 0.06184097 0.0543 0.7203 2.5246

44 M44
12 72.1245941 0.06192285 0.0543 0.7219 2.5313

45 N45
11 74.1088058 0.06199601 0.0584 0.6708 2.5587

46 N46
11 76.0949856 0.06205826 0.0584 0.6718 2.5613

47 N47
11 78.0829008 0.06211345 0.0584 0.6727 2.5636

s>48 Ds

σ(16) = 0.005864 (s = 41, t = 11, w = 23),

τ(16) = 0.007549 (s = 15), G(16)6109 (v = 47).

19. Permissible exponents for seventeenth powers

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents λs listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 36s619, the condition (δ) of Theorem 3.4 is
satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied in
this range of s, we deduce that one may take τj,l = 0 (l = 1, 2) for 36s619. When
86j611 and 206s627, meanwhile, we must resort to Theorem 3.4(II)(1) and (2).
Here we note that condition (iii) is satisfied for 206s626, and that (II)(2) applies
for s = 27, and thus the estimate (4.1) holds for 86j611 and l = 2, 3 with χj,l = 1

3
and τj,l = 1. Note here that when s = 27, the relevant value of σ is so small that
the condition φ1 + · · ·+ φj> 1

3 (1− σ)−1 is satisfied transparently.
In order to discuss permissible exponents for 286s639, we apply case (Ic) of

Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
j = 12 and l = 2, one has J = 2, and hence one may take

δ6 = 0.0205621 and δ12 = 0.3706630,

whence we may take

τ12,l = 1
6δ6 < 0.00343 whenever φ160.057704 (l = 2).
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Further, when j = 12, 13, 14 and 156j + l616, one has J = 1, and hence one may
take

δ6 = 0.1004200, δ7 = 0.1840767, δ12 = 0.8905163,

δ13 = 1.0847742, δ14 = 1.2966345.

Thus we deduce that one may take

τ12,l = 1
6δ6 < 0.01674 whenever φ160.056530 (l = 3),

that one may take

τ13,l = 1
13 (δ6 + δ7) < 0.02189 whenever φ160.055777 (l = 2),

and otherwise,
τ13,l = 1

13δ13 < 0.08345 (l = 2, 3),

and that one may take

τ14,l = 1
14δ14 < 0.09262 (l = 2).

As in the previous cases, our computations for s>40 depend on first obtaining
preliminary estimates by applying the process Ms

11 for 406s651 (noting (5.27) and
checking (D1) or (D2)), and Ds for s>52. In this way we obtain the preliminary
permissible exponents

λ40 = 63.318, λ41 = 65.281, λ42 = 67.248, λ43 = 69.219,

λ44 = 71.193, λ45 = 73.170, λ46 = 75.150, λ47 = 77.133,

λ48 = 79.117, λ49 = 81.103, λ50 = 83.091, λ51 = 85.080,

and by virtue of the preliminary exponent

σ(17) = 0.00545 (s = 44, t = 12, w = 24),

we have also

λs = max{2s− 17, 85.080 + 2(s− 51)(1− 0.00545)}

for s > 51. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) s = 40, 41. With process Ns
14, one finds that Lemma 5.7(I ′) holds with

u = s− 15, by virtue of condition (A1).

(b) 426s646. With process Ns
13, one finds that Lemma 5.7(I ′) holds with u =

s− 14, by virtue of condition (A1).

(c) 476s650. With process Ns
12, one finds that Lemma 5.7(I ′) holds with u =

s− 13, by virtue of condition (A1).

(e) s>51. One finds that process Ds applies.
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Table of permissible exponents for k = 17

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0061404 0.00307019

4 B4,2
1,6 4.0554335 0.01646473

5 A5,2
1 5.1619828 0.02701166

6 B6,2
2,8 6.3136071 0.03134018 0.0056 0.0369

7 B7,2
2,8 7.5040992 0.03349964 0.0210 0.0545

8 A8,2
2 8.7323022 0.03513032 0.0278 0.0630

9 B9,2
3,10 10.0004288 0.03689292 0.0168 0.0869 0.9360

10 A10,2
3 11.3043577 0.03799316 0.0257 0.0991 1.1377

11 A11,2
3 12.6459140 0.03927903 0.0330 0.1097 1.3053

12 A12,2
4 14.0233197 0.04034662 0.0245 0.1392 1.3790

13 A13,2
4 15.4369512 0.04145984 0.0321 0.1516 1.4456

14 A14,2
5 16.8860867 0.04251950 0.0239 0.1831 1.4968

15 A15,2
5 18.3702735 0.04356583 0.0325 0.1980 1.5438

16 A16,2
6 19.8886761 0.04457565 0.0244 0.2314 1.5855

17 A17,2
6 21.4405373 0.04556572 0.0332 0.2477 1.6256

18 A18,2
7 23.0247863 0.04651864 0.0251 0.2827 1.6648

19 A19,2
7 24.6403737 0.04744334 0.0339 0.3001 1.7059

20 A20,2
8 26.2860071 0.04832721 0.0259 0.3366 1.7458

21 B21,3
8,17 27.9604002 0.04917555 0.0350 0.3554 1.7878

22 A22,2
9 29.6620874 0.04997915 0.0279 0.3945 1.8289

23 B23,3
9,18 31.3896134 0.05074142 0.0362 0.4131 1.8710

24 A24,2
10 33.1414245 0.05145731 0.0291 0.4534 1.9126

25 B25,3
10,19 34.9159903 0.05212921 0.0368 0.4717 1.9544

26 A26,2
11 36.7117441 0.05275480 0.0295 0.5126 1.9959

27 B27,3
11,20 38.5271601 0.05333611 0.0367 0.5307 2.0372

28 A28,2
12 40.3607211 0.05387253 0.0245 0.5647 2.0725

29 A29,2
12 42.2109803 0.05436691 0.0310 0.5818 2.1119

30 B30,3
12,23 44.0765377 0.05482022 0.0367 0.5976 2.1499

31 A31,2
13 45.9560566 0.05523415 0.0275 0.6371 2.1879

32 A32,2
13 47.8482757 0.05561097 0.0328 0.6521 2.2240

33 B33,3
13,25 49.7520144 0.05595308 0.0379 0.6667 2.2594

34 B34,3
13,25 51.6661665 0.05626250 0.0409 0.6775 2.2946

35 A35,2
14 53.5897087 0.05654168 0.0318 0.7177 2.3262

36 A36,2
14 55.5216990 0.05679304 0.0354 0.7292 2.3562

37 A37,2
14 57.4612719 0.05701880 0.0386 0.7398 2.3843

38 A38,2
14 59.4076368 0.05722114 0.0414 0.7493 2.4146

39 A39,2
14 61.3600741 0.05740216 0.0439 0.7581 2.4458
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s Process λs φ1 φj
∑j
i=1 φi φ∗s

40 N40
14 63.3179278 0.05756359 0.0442 0.7624 2.4638

41 N41
14 65.2806096 0.05770757 0.0442 0.7658 2.4789

42 N42
13 67.2475940 0.05783611 0.0511 0.7271 2.5076

43 N43
13 69.2183942 0.05794990 0.0511 0.7296 2.5178

44 N44
13 71.1925852 0.05805112 0.0511 0.7318 2.5269

45 N45
13 73.1697840 0.05814094 0.0511 0.7337 2.5350

46 N46
13 75.1496484 0.05822056 0.0511 0.7355 2.5423

47 N47
12 77.1318848 0.05829175 0.0550 0.6878 2.5738

48 N48
12 79.1162028 0.05835376 0.0550 0.6890 2.5767

49 N49
12 81.1023673 0.05840894 0.0550 0.6901 2.5793

50 N50
12 83.0901643 0.05845772 0.0550 0.6910 2.5816

s>51 Ds

σ(17) = 0.005454 (s = 44, t = 12, w = 24),

τ(17) = 0.007060 (s = 16), G(17)6117 (v = 50).

20. Permissible exponents for eighteenth powers

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents λs listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 36s621, the condition (δ) of Theorem 3.4 is
satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied
in this range of s, we deduce that one may take τj,l = 0 (l = 1, 2, 3) for 36s621.
When 96j612 and 226s629, meanwhile, we must resort to Theorem 3.4(II)(1)
and (2). Here we note that condition (iii) is satisfied for 226s627, and that (II)(2)
applies for s = 28, 29, and thus the estimate (4.1) holds for 96j612 and l = 2, 3
with χj,l = 1

3 and τj,l = 1. Note here that when s = 28, 29, the relevant value of σ
is so small that the condition φ1 + · · ·+ φj> 1

3 (1− σ)−1 is satisfied transparently.
In order to discuss permissible exponents for 306s641, we apply case (Ic) of

Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
j = 13 and l = 2, one has J = 2, and hence one may take

δ6 = 0.0176775, δ7 = 0.0427686 and δ14 = 0.5236334,

whence we may take

τ13,l = 1
13 (δ6 + δ7) < 0.00465 whenever φ160.054235 (l = 2).

Further, when j = 13, 14, 15 and 166j + l617, one has J = 1, and hence one may
take

δ6 = 0.0901459, δ7 = 0.1679365, δ14 = 1.2130601, δ15 = 1.4286845.
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Thus we deduce that one may take

τ13,l = 1
13 (δ6 + δ7) < 0.01986 whenever φ160.052973 (l = 3),

that one may take

τ14,l = 1
7δ7 < 0.02400 whenever φ160.052973 (l = 2, 3),

and otherwise,
τ14,l = 1

14δ14 < 0.08665 (l = 2, 3),

and that one may take

τ15,l = 1
15δ15 < 0.09525 (l = 2).

As in the previous cases, our computations for s>42 depend on first obtaining
preliminary estimates by applying the process Ms

12 for 426s654 (noting (5.27) and
checking (D1) or (D2)), and Ds for s>55. In this way we obtain the preliminary
permissible exponents

λ42 = 66.358, λ43 = 68.318, λ44 = 70.283, λ45 = 72.252, λ46 = 74.224,

λ47 = 76.199, λ48 = 78.177, λ49 = 80.157, λ50 = 82.140,

λ51 = 84.124, λ52 = 86.110, λ53 = 88.098, λ54 = 90.087,

and by virtue of the preliminary exponent

σ(18) = 0.00509 (s = 47, t = 13, w = 26),

we have also

λs = max{2s− 18, 90.087 + 2(s− 54)(1− 0.00509)}

for s > 54. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) 426s644. With process Ns
15, one finds that Lemma 5.7(I ′) holds with u =

s− 16, by virtue of condition (A1).

(b) 456s649. With process Ns
14, one finds that Lemma 5.7(I ′) holds with u =

s− 15, by virtue of condition (A1).

(c) 506s654. With process Ns
13, one finds that Lemma 5.7(I ′) holds with u =

s− 14, by virtue of condition (A1).

(e) s>55. One finds that process Ds applies.
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Table of permissible exponents for k = 18

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0050870 0.00254346

4 B4,2
1,6 4.0484489 0.01447855

5 B5,2
1,6 5.1469671 0.02493153

6 B6,2
2,8 6.2893077 0.02933022 0.0034 0.0328

7 B7,2
2,8 7.4676627 0.03123178 0.0185 0.0497

8 A8,2
2 8.6816032 0.03275099 0.0254 0.0581

9 B9,2
3,10 9.9332381 0.03438389 0.0135 0.0787 0.8757

10 A10,2
3 11.2185989 0.03537489 0.0230 0.0913 1.0979

11 A11,2
3 12.5388988 0.03647482 0.0295 0.1006 1.2547

12 B12,2
4,11 13.8936352 0.03749420 0.0213 0.1278 1.3486

13 A13,2
4 15.2823305 0.03846045 0.0284 0.1390 1.4100

14 A14,2
5 16.7049932 0.03943607 0.0206 0.1683 1.4650

15 A15,2
5 18.1609021 0.04036376 0.0285 0.1816 1.5081

16 A16,2
6 19.6497248 0.04128885 0.0209 0.2126 1.5495

17 A17,2
6 21.1706906 0.04218253 0.0290 0.2273 1.5872

18 A18,2
7 22.7231221 0.04306012 0.0215 0.2599 1.6240

19 A19,2
7 24.3060925 0.04390870 0.0296 0.2757 1.6626

20 A20,2
8 25.9186447 0.04473174 0.0222 0.3097 1.7001

21 B21,3
8,17 27.5596769 0.04552348 0.0306 0.3268 1.7397

22 A22,2
9 29.2280189 0.04628304 0.0237 0.3628 1.7781

23 B23,3
9,18 30.9224199 0.04700798 0.0321 0.3807 1.8185

24 A24,2
10 32.6415685 0.04769656 0.0253 0.4180 1.8574

25 B25,3
10,19 34.3841221 0.04834828 0.0331 0.4359 1.8979

26 A26,2
11 36.1487034 0.04896179 0.0263 0.4739 1.9370

27 B27,3
11,20 37.9339369 0.04953749 0.0337 0.4917 1.9773

28 A28,2
12 39.7384452 0.05007502 0.0266 0.5304 2.0163

29 B29,3
12,22 41.5608774 0.05057526 0.0334 0.5475 2.0558

30 A30,2
13 43.3999089 0.05103871 0.0214 0.5792 2.0894

31 A31,2
13 45.2542644 0.05146692 0.0274 0.5952 2.1257

32 B32,3
13,25 47.1227175 0.05186115 0.0330 0.6106 2.1626

33 B33,3
13,24 49.0040975 0.05222287 0.0371 0.6234 2.1972

34 A34,2
14 50.8972954 0.05255372 0.0291 0.6620 2.2327

35 A35,2
14 52.8012695 0.05285563 0.0335 0.6753 2.2662

36 B36,3
14,27 54.7150443 0.05313037 0.0374 0.6874 2.2979

37 A37,2
15 56.6377106 0.05337974 0.0283 0.7246 2.3305

38 A38,2
15 58.5684269 0.05360563 0.0317 0.7356 2.3597

39 A39,2
15 60.5064172 0.05380985 0.0347 0.7458 2.3872
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s Process λs φ1 φj
∑j
i=1 φi φ∗s

40 A40,2
15 62.4509681 0.05399414 0.0375 0.7552 2.4132

41 A41,2
15 64.4014262 0.05416015 0.0399 0.7637 2.4418

42 N42
15 66.3571950 0.05430945 0.0417 0.7709 2.4685

43 N43
15 68.3177304 0.05444347 0.0417 0.7744 2.4838

44 N44
15 70.2825406 0.05456372 0.0417 0.7776 2.4977

45 N45
14 72.2511825 0.05467161 0.0483 0.7410 2.5253

46 N46
14 74.2232486 0.05476794 0.0483 0.7433 2.5349

47 N47
14 76.1983771 0.05485415 0.0483 0.7454 2.5434

48 N48
14 78.1762412 0.05493118 0.0483 0.7473 2.5512

49 N49
14 80.1565468 0.05499994 0.0483 0.7490 2.5581

50 N50
13 82.1390360 0.05506161 0.0519 0.7040 2.5899

51 N51
13 84.1234628 0.05511611 0.0519 0.7052 2.5927

52 N52
13 86.1096189 0.05516484 0.0519 0.7063 2.5953

53 N53
13 88.0973151 0.05520823 0.0519 0.7072 2.5975

54 N54
13 90.0863822 0.05524686 0.0519 0.7081 2.5996

s>55 Ds

σ(18) = 0.005095 (s = 47, t = 13, w = 26),

τ(18) = 0.006630 (s = 17), G(18)6125 (v = 54).

21. Permissible exponents for nineteenth powers

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents λs listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 36s621, the condition (δ) of Theorem 3.4 is
satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied in
this range of s, we deduce that one may take τj,l = 0 (l = 1, 2) for 36s621. When
96j613 and 226s631, meanwhile, we must resort to Theorem 3.4(II)(1) and (2).
Here we note that condition (iii) is satisfied for 226s629, and that (II)(2) applies
for s = 30, 31, and thus the estimate (4.1) holds for 96j613 and l = 2, 3 with
χj,l = 1

3 and τj,l = 1. Note here that when s = 30, 31, the relevant value of σ is so
small that the condition φ1 + · · ·+ φj> 1

3 (1− σ)−1 is satisfied transparently.
In order to discuss permissible exponents for 326s644, we apply case (Ic) of

Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
j = 14 and l = 2, one has J = 2, and hence one may take

δ7 = 0.0375713, and δ14 = 0.4889692,

whence we may take

τ14,l = 1
7δ7 < 0.00537 whenever φ160.051509 (l = 2).
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Further, when j = 14, 15 and 176j+ l618, one has J = 1, and hence one may take

δ7 = 0.1541435, δ8 = 0.2475913, δ14 = 1.1394461,

δ15 = 1.3428361, δ16 = 1.5615789.

Thus we deduce that one may take

τ14,l = 1
7δ7 < 0.02203 whenever φ160.050425 (l = 3),

that one may take

τ15,l = 1
15 (δ7 + δ8) < 0.02679 whenever φ160.049834 (l = 2, 3),

and otherwise,
τ15,l = 1

15δ15 < 0.08953 (l = 2, 3).

As in the previous cases, our computations for s>45 depend on first obtaining
preliminary estimates by applying the process Ms

13 for 456s658 (noting (5.27) and
checking (D1) or (D2)), and Ds for s>59. In this way we obtain the preliminary
permissible exponents

λ45 = 71.356, λ46 = 73.319, λ47 = 75.286, λ48 = 77.256, λ49 = 79.229,

λ50 = 81.205, λ51 = 83.183, λ52 = 85.164, λ53 = 87.147, λ54 = 89.131,

λ55 = 91.117, λ56 = 93.105, λ57 = 95.094, λ58 = 97.084,

and by virtue of the preliminary exponent

σ(19) = 0.00478 (s = 50, t = 13, w = 28),

we have also

λs = max{2s− 19, 97.084 + 2(s− 58)(1− 0.00478)}

for s > 58. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) 456s647. With process Ns
16, one finds that Lemma 5.7(I ′) holds with u =

s− 17, by virtue of condition (A1).

(b) 486s652. With process Ns
15, one finds that Lemma 5.7(I ′) holds with u =

s− 16, by virtue of condition (A1).

(c) 536s658. With process Ns
14, one finds that Lemma 5.7(I ′) holds with u =

s− 15, by virtue of condition (A1).

(e) s>59. One finds that process Ds applies.
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Table of permissible exponents for k = 19

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0042273 0.00211363

4 B4,2
1,6 4.0423620 0.01272951

5 B5,2
1,6 5.1333114 0.02298073

6 A6,2
1 6.2663273 0.02733191

7 B7,2
2,8 7.4343072 0.02929710 0.0164 0.0457

8 A8,2
2 8.6357245 0.03067723 0.0233 0.0540

9 A9,2
2 9.8725415 0.03215755 0.0286 0.0608

10 B10,2
3,10 11.1414574 0.03308734 0.0205 0.0843 1.0573

11 A11,2
3 12.4430359 0.03404381 0.0266 0.0929 1.2102

12 B12,2
4,11 13.7775620 0.03500339 0.0186 0.1180 1.3222

13 A13,2
4 15.1440547 0.03585180 0.0252 0.1282 1.3792

14 A14,2
5 16.5429734 0.03674656 0.0179 0.1555 1.4369

15 A15,2
5 17.9734687 0.03757479 0.0250 0.1674 1.4766

16 B16,2
6,14 19.4355306 0.03842022 0.0178 0.1962 1.5175

17 A17,2
6 20.9284296 0.03922960 0.0253 0.2096 1.5529

18 B18,2
7,15 22.4517574 0.04003558 0.0182 0.2399 1.5885

19 A19,2
7 24.0047167 0.04081410 0.0259 0.2544 1.6239

20 A20,2
8 25.5866021 0.04157726 0.0189 0.2861 1.6601

21 A21,2
8 27.1964861 0.04231369 0.0269 0.3020 1.6966

22 A22,2
9 28.8334329 0.04302673 0.0199 0.3348 1.7332

23 A23,2
9 30.4963841 0.04371136 0.0281 0.3518 1.7708

24 A24,2
10 32.1842434 0.04436768 0.0216 0.3865 1.8075

25 A25,2
10 33.8958472 0.04499335 0.0295 0.4037 1.8464

26 A26,2
11 35.6300014 0.04558788 0.0229 0.4392 1.8832

27 B27,3
11,21 37.3854842 0.04615045 0.0304 0.4565 1.9222

28 A28,2
12 39.1610622 0.04668075 0.0239 0.4928 1.9592

29 B29,3
12,22 40.9555027 0.04717878 0.0307 0.5096 1.9978

30 A30,2
13 42.7675849 0.04764484 0.0240 0.5463 2.0346

31 A31,2
13 44.5961098 0.04807945 0.0304 0.5628 2.0727

32 A32,2
14 46.4399090 0.04848337 0.0186 0.5922 2.1057

33 A33,2
14 48.2978543 0.04885769 0.0243 0.6075 2.1383

34 A34,2
14 50.1688626 0.04920355 0.0296 0.6222 2.1738

35 B35,3
14,26 52.0518997 0.04952220 0.0338 0.6350 2.2073

36 A36,2
15 53.9459843 0.04981500 0.0258 0.6710 2.2402

37 B37,3
15,29 55.8501910 0.05008342 0.0307 0.6849 2.2740

38 B38,3
15,29 57.7636509 0.05032891 0.0342 0.6960 2.3043

39 B39,3
15,28 59.6855524 0.05055296 0.0366 0.7053 2.3329



70 R. C. VAUGHAN AND T. D. WOOLEY

s Process λs φ1 φj
∑j
i=1 φi φ∗s

40 A40,3
15 61.6151397 0.05075705 0.0382 0.7129 2.3620

41 A41,3
15 63.5517128 0.05094263 0.0397 0.7198 2.3888

42 A42,3
15 65.4946250 0.05111110 0.0410 0.7262 2.4141

43 A43,3
15 67.4432807 0.05126380 0.0422 0.7321 2.4379

44 A44,3
15 69.3971334 0.05140202 0.0433 0.7376 2.4632

45 N45
16 71.3556823 0.05152695 0.0395 0.7819 2.4876

46 N46
16 73.3184698 0.05163973 0.0395 0.7852 2.5017

47 N47
16 75.2850793 0.05174146 0.0395 0.7882 2.5146

48 N48
15 77.2551336 0.05183320 0.0458 0.7534 2.5413

49 N49
15 79.2282862 0.05191569 0.0458 0.7557 2.5502

50 N50
15 81.2042263 0.05198993 0.0458 0.7577 2.5583

51 N51
15 83.1826716 0.05205667 0.0458 0.7595 2.5657

52 N52
15 85.1633672 0.05211663 0.0458 0.7611 2.5723

53 N53
14 87.1460856 0.05217061 0.0492 0.7186 2.6042

54 N54
14 89.1306147 0.05221882 0.0492 0.7197 2.6070

55 N55
14 91.1167691 0.05226214 0.0492 0.7208 2.6095

56 N56
14 93.1043803 0.05230098 0.0492 0.7217 2.6118

57 N57
14 95.0932973 0.05233578 0.0492 0.7226 2.6138

58 N58
14 97.0833838 0.05236696 0.0492 0.7234 2.6156

s>59 Ds

σ(19) = 0.004780 (s = 50, t = 13, w = 28),

τ(19) = 0.006252 (s = 18), G(19)6134 (v = 58).

22. Permissible exponents for twentieth powers

Following the computational procedure outlined in §8, we obtain the permissible
exponents recorded in the table below. The exponents λs listed in the table improve
on those previously available for s>3. We follow a similar path to that taken in
previous sections. Note first that for 36s623, the condition (δ) of Theorem 3.4 is
satisfied. Since one of the conditions (i) and (iii) of Theorem 3.4 is also satisfied in
this range of s, we deduce that one may take τj,l = 0 (l = 1, 2) for 36s623. When
106j614 and 246s633, meanwhile, we must resort to Theorem 3.4(II)(1) and (2).
Here we note that condition (iii) is satisfied for 246s630, and that (II)(2) applies
for s = 31, 32, 33, and thus the estimate (4.1) holds for 106j614 and l = 2, 3 with
χj,l = 1

3 and τj,l = 1. Note here that when s = 31, 32, 33, the relevant value of σ is
so small that the condition φ1 + · · ·+ φj> 1

3 (1− σ)−1 is satisfied transparently.
In order to discuss permissible exponents for 346s647, we apply case (Ic) of

Theorem 3.4. In the notation of the latter theorem, we find from §23 that when
j = 15 and l = 2, one has J = 2, and hence one may take

δ7 = 0.0332148, δ8 = 0.0661378 and δ16 = 0.6484502,
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whence we may take

τ15,l = 1
15 (δ7 + δ8) < 0.00663 whenever φ160.048742 (l = 2).

Further, when j = 15, 16 and 186j+ l619, one has J = 1, and hence one may take

δ7 = 0.1411109, δ8 = 0.2285099, δ15 = 1.2643687, δ16 = 1.4713863.

Thus we deduce that one may take

τ15,l = 1
15 (δ7 + δ8) < 0.02465 whenever φ160.047586 (l = 3),

and otherwise
τ15,l = 1

15δ15 < 0.08430 (l = 2, 3),

and that one may take

τ16,l = 1
16δ16 < 0.09197 (l = 2, 3).

As in the previous cases, our computations for s>48 depend on first obtaining
preliminary estimates by applying the process Ms

14 for 486s661 (noting (5.27) and
checking (D1) or (D2)), and Ds for s>62. In this way we obtain the preliminary
permissible exponents

λ48 = 76.356, λ49 = 78.320, λ50 = 80.289, λ51 = 82.260, λ52 = 84.234,

λ53 = 86.211, λ54 = 88.190, λ55 = 90.171, λ56 = 92.154, λ57 = 94.138,

λ58 = 96.124, λ59 = 98.112, λ60 = 100.101, λ61 = 102.091,

and by virtue of the preliminary exponent

σ(20) = 0.00450 (s = 54, t = 14, w = 29),

we have also

λs = max{2s− 20, 102.091 + 2(s− 61)(1− 0.00450)}

for s > 61. Equipped with these preliminary bounds, we refine our procedure as in-
dicated in the table. One may computationally check the validity of the appropriate
case of Lemma 5.7 as follows.

(a) s = 48, 49. With process Ns
17, one finds that Lemma 5.7(I ′) holds with

u = s− 18, by virtue of condition (A1).

(b) 506s656. With process Ns
16, one finds that Lemma 5.7(I ′) holds with u =

s− 17, by virtue of condition (A1).

(c) 576s662. With process Ns
15, one finds that Lemma 5.7(I ′) holds with u =

s− 16, by virtue of condition (A1).

(e) s>63. One finds that process Ds applies.
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Table of permissible exponents for k = 20

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0035377 0.00176883

4 B4,2
1,6 4.0372112 0.01123775

5 B5,2
1,6 5.1214726 0.02126317

6 A6,2
1 6.2457501 0.02547440

7 B7,2
2,9 7.4042791 0.02754990 0.0141 0.0417

8 A8,2
2 8.5946271 0.02885933 0.0215 0.0504

9 A9,2
2 9.8176862 0.03012126 0.0263 0.0564

10 B10,2
3,10 11.0720258 0.03108406 0.0183 0.0781 1.0176

11 A11,2
3 12.3569582 0.03191458 0.0241 0.0862 1.1705

12 B12,2
4,12 13.6733507 0.03281045 0.0162 0.1093 1.2987

13 A13,2
4 15.0199527 0.03356385 0.0225 0.1189 1.3522

14 B14,2
5,13 16.3974554 0.03438079 0.0150 0.1436 1.4113

15 A15,2
5 17.8050250 0.03512761 0.0221 0.1551 1.4486

16 B16,2
6,14 19.2428091 0.03589874 0.0148 0.1814 1.4887

17 A17,2
6 20.7101660 0.03663479 0.0221 0.1941 1.5221

18 A18,2
6 22.2068593 0.03737393 0.0293 0.2069 1.5565

19 A19,2
7 23.7322237 0.03808882 0.0225 0.2356 1.5891

20 A20,2
8 25.2857385 0.03879475 0.0159 0.2652 1.6243

21 A21,2
8 26.8666319 0.03947826 0.0234 0.2799 1.6577

22 A22,2
9 28.4741610 0.04014501 0.0169 0.3107 1.6935

23 A23,2
9 30.1074344 0.04078835 0.0244 0.3260 1.7277

24 A24,2
10 31.7655438 0.04140990 0.0182 0.3583 1.7639

25 A25,2
10 33.4474901 0.04200611 0.0258 0.3745 1.7992

26 A26,2
11 35.1522491 0.04257718 0.0197 0.4079 1.8352

27 B27,3
11,21 36.8787481 0.04312142 0.0271 0.4245 1.8717

28 A28,2
12 38.6258968 0.04363868 0.0210 0.4587 1.9073

29 B29,3
12,22 40.3925867 0.04412832 0.0279 0.4751 1.9443

30 A30,2
13 42.1777082 0.04459040 0.0216 0.5097 1.9795

31 A31,2
13 43.9801557 0.04502494 0.0282 0.5259 2.0165

32 A32,2
14 45.7988398 0.04543236 0.0216 0.5606 2.0515

33 B33,3
14,25 47.6326920 0.04581314 0.0276 0.5763 2.0876

34 A34,2
15 49.4806744 0.04616803 0.0163 0.6042 2.1205

35 A35,2
15 51.3417836 0.04649788 0.0215 0.6187 2.1507

36 A36,2
15 53.2150565 0.04680367 0.0264 0.6325 2.1835

37 B37,3
15,28 55.0995728 0.04708646 0.0308 0.6453 2.2165

38 B38,3
15,28 56.9944581 0.04734736 0.0339 0.6559 2.2467

39 A39,2
16 58.8988854 0.04758756 0.0276 0.6924 2.2796
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s Process λs φ1 φj
∑j
i=1 φi φ∗s

40 B40,3
16,30 60.8120763 0.04780826 0.0312 0.7037 2.3097

41 B41,3
16,30 62.7333008 0.04801065 0.0337 0.7130 2.3370

42 A42,3
16 64.6618772 0.04819593 0.0356 0.7208 2.3636

43 A43,3
16 66.5971707 0.04836528 0.0369 0.7276 2.3899

44 A44,3
16 68.5385926 0.04851983 0.0381 0.7338 2.4148

45 A45,3
16 70.4855980 0.04866069 0.0393 0.7397 2.4384

46 A46,3
16 72.4376841 0.04878890 0.0404 0.7451 2.4606

47 A47,3
16 74.3943883 0.04890547 0.0414 0.7502 2.4837

48 N48
17 76.3552854 0.04901133 0.0375 0.7919 2.5047

49 N49
17 78.3199857 0.04910737 0.0375 0.7949 2.5178

50 N50
16 80.2881335 0.04919448 0.0435 0.7623 2.5464

51 N51
16 82.2594024 0.04927331 0.0435 0.7647 2.5556

52 N52
16 84.2334960 0.04934469 0.0435 0.7668 2.5640

53 N53
16 86.2101439 0.04940924 0.0435 0.7687 2.5717

54 N54
16 88.1891004 0.04946760 0.0435 0.7704 2.5787

55 N55
16 90.1701423 0.04952031 0.0435 0.7720 2.5851

56 N56
16 92.1530669 0.04956792 0.0435 0.7735 2.5909

57 N57
15 94.1376919 0.04961094 0.0468 0.7328 2.6199

58 N58
15 96.1238487 0.04964967 0.0468 0.7338 2.6224

59 N59
15 98.1113875 0.04968462 0.0468 0.7348 2.6246

60 N60
15 100.1001722 0.04971613 0.0468 0.7356 2.6266

61 N61
15 102.0900795 0.04974452 0.0468 0.7364 2.6284

62 N62
15 104.0809983 0.04977011 0.0468 0.7371 2.6301

s>63 Ds

σ(20) = 0.004501 (s = 54, t = 14, w = 29),

τ(20) = 0.005915 (s = 19), G(20)6142 (v = 62).

23. Auxiliary permissible exponents

We collect together in this section the permissible exponents for larger k required
in our calculation of the exponents in §§13–22. We do not work hard here to
establish the sharpest such exponents, since good approximations will suffice.



74 R. C. VAUGHAN AND T. D. WOOLEY

Table of permissible exponents for k = 22

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0025439 0.00127191

4 B4,2
1,6 4.0292912 0.00892335

5 B5,2
1,6 5.1025520 0.01845031

6 A6,2
1 6.2121725 0.02238321

7 B7,2
2,9 7.3545751 0.02460381 0.0104 0.0350

8 B8,2
2,9 8.5257736 0.02576186 0.0183 0.0440

9 A9,2
2 9.7256814 0.02674629 0.0225 0.0492

10 B10,2
3,10 10.9550112 0.02771586 0.0146 0.0678 0.9494

Table of permissible exponents for k = 24

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0018708 0.00093536

4 B4,2
1,6 4.0234059 0.00718285

5 B5,2
1,7 5.0866022 0.01589207

6 A6,2
1 6.1846118 0.01994744

7 B7,2
2,10 7.3136219 0.02218427 0.0071 0.0293

8 B8,2
2,9 8.4689321 0.02322785 0.0154 0.0386

9 A9,2
2 9.6501924 0.02406834 0.0195 0.0436

10 B10,2
3,11 10.8586937 0.02497080 0.0108 0.0586 0.8645

11 B11,2
3,11 12.0918680 0.02550777 0.0167 0.0662 1.0427

Table of permissible exponents for k = 26

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0014072 0.00070358

4 B4,2
1,6 4.0190100 0.00587034

5 B5,2
1,7 5.0738636 0.01377891

6 B6,2
1,7 6.1622494 0.01794221

7 B7,2
2,10 7.2802564 0.02021446 0.0045 0.0248

8 B8,2
2,10 8.4222375 0.02112895 0.0129 0.0341

9 A9,2
2 9.5880882 0.02188651 0.0171 0.0390

10 B10,2
3,11 10.7792591 0.02272621 0.0082 0.0516 0.8018

11 B11,2
3,11 11.9929177 0.02317152 0.0141 0.0591 0.9909



FURTHER IMPROVEMENTS IN WARING’S PROBLEM, IV 75

Table of permissible exponents for k = 28

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0010768 0.00053837

4 B4,2
1,6 4.0156211 0.00484986

5 B5,2
1,8 5.0633584 0.01198110

6 B6,2
1,7 6.1434849 0.01623098

7 B7,2
2,10 7.2523170 0.01858310 0.0026 0.0212

8 B8,2
2,10 8.3829073 0.01935336 0.0107 0.0301

9 B9,2
2,10 9.5356712 0.02005540 0.0151 0.0351

10 A10,2
2 10.7106189 0.02066883 0.0179 0.0385

11 B11,2
3,12 11.9079284 0.02124033 0.0115 0.0526 0.9281

12 A12,2
3 13.1262695 0.02163492 0.0154 0.0576 1.0629

Table of permissible exponents for k = 30

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0008289 0.00041441

4 B4,2
1,6 4.0128519 0.00400878

5 B5,2
1,8 5.0536213 0.01022522

6 B6,2
1,7 6.1264298 0.01471957

7 A7,2
1 7.2247478 0.01673904

8 B8,2
2,11 8.3459599 0.01789043 0.0087 0.0266

9 B9,2
2,10 9.4875943 0.01850453 0.0134 0.0319

10 A10,2
2 10.6496179 0.01903383 0.0160 0.0350

11 B11,2
3,13 11.8328152 0.01959249 0.0094 0.0472 0.8726

12 A12,2
3 13.0354619 0.01993146 0.0135 0.0523 1.0225

13 B13,2
4,14 14.2585847 0.02034949 0.0061 0.0641 1.1865

14 B14,2
4,14 15.5012985 0.02067161 0.0113 0.0708 1.2261
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Table of permissible exponents for k = 32

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0006513 0.00032563

4 B4,2
1,6 4.0107492 0.00336671

5 B5,2
1,8 5.0460456 0.00884787

6 B6,2
1,8 6.1127790 0.01347074

7 A7,2
1 7.2031814 0.01535571

8 B8,2
2,11 8.3160843 0.01661114 0.0070 0.0236

9 B9,2
2,11 9.4480157 0.01716982 0.0118 0.0290

10 B10,2
2,11 10.5989372 0.01764754 0.0145 0.0321

11 A11,2
2 11.7694872 0.01814158 0.0166 0.0348

12 B12,2
3,13 12.9585035 0.01847574 0.0117 0.0477 0.9802

13 A13,2
3 14.1659645 0.01878922 0.0145 0.0513 1.0906

14 B14,2
4,15 15.3924025 0.01913448 0.0091 0.0641 1.2034

15 A15,2
4 16.6372483 0.01942050 0.0127 0.0690 1.2378

Table of permissible exponents for k = 34

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0005147 0.00025732

4 B4,2
1,6 4.0090083 0.00283170

5 B5,2
1,8 5.0397401 0.00770030

6 B6,2
1,8 6.1004200 0.01223322

7 A7,2
1 7.1840767 0.01418011

8 B8,2
2,12 8.2896184 0.01548459 0.0054 0.0209

9 B9,2
2,11 9.4129882 0.01600048 0.0104 0.0264

10 B10,2
2,11 10.5541305 0.01643672 0.0131 0.0295

11 A11,2
2 11.7133896 0.01686019 0.0150 0.0319

12 B12,2
3,13 12.8905163 0.01721916 0.0101 0.0436 0.9376

13 A13,2
3 14.0847742 0.01748578 0.0129 0.0471 1.0521

14 A14,2
3 15.2966345 0.01778064 0.0154 0.0504 1.1577

15 B15,2
4,15 16.5259780 0.01805376 0.0109 0.0632 1.2170
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Table of permissible exponents for k = 36

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0004128 0.00020635

4 B4,2
1,6 4.0076365 0.00240826

5 B5,2
1,8 5.0346195 0.00675866

6 B6,2
1,8 6.0901459 0.01118271

7 A7,2
1 7.1679365 0.01316287

8 B8,2
2,12 8.2670449 0.01450637 0.0040 0.0185

9 B9,2
2,12 9.3828824 0.01497972 0.0091 0.0241

10 B10,2
2,11 10.5154507 0.01538430 0.0118 0.0272

11 A11,2
2 11.6648323 0.01575000 0.0137 0.0294

12 B12,2
3,14 12.8314116 0.01611772 0.0086 0.0398 0.8917

13 A13,2
3 14.0140325 0.01635130 0.0115 0.0435 1.0180

14 A14,2
3 15.2130601 0.01660506 0.0137 0.0464 1.1166

15 B15,2
4,16 16.4286845 0.01686286 0.0093 0.0581 1.1986

16 A16,2
4 17.6606068 0.01708916 0.0120 0.0618 1.2277

Table of permissible exponents for k = 38

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0003353 0.00016763

4 B4,2
1,6 4.0065387 0.00206802

5 B5,2
1,8 5.0304085 0.00597725

6 B6,2
1,9 6.0814901 0.01027884

7 A7,2
1 7.1541435 0.01227563

8 B8,2
2,12 8.2475913 0.01365028 0.0029 0.0166

9 B9,2
2,12 9.3566575 0.01406869 0.0079 0.0220

10 B10,2
2,11 10.4816593 0.01446221 0.0108 0.0253

11 A11,2
2 11.6223319 0.01477912 0.0125 0.0273

12 B12,2
3,14 12.7795262 0.01514737 0.0072 0.0366 0.8484

13 B13,2
3,14 13.9517878 0.01535244 0.0102 0.0402 0.9829

14 A14,2
3 15.1394461 0.01557562 0.0123 0.0429 1.0800

15 A15,2
3 16.3428361 0.01581504 0.0144 0.0457 1.1800

16 A16,2
4 17.5615789 0.01601671 0.0105 0.0571 1.2100
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Table of permissible exponents for k = 40

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0002717 0.00013584

4 B4,2
1,6 4.0055702 0.00176633

5 B5,2
1,8 5.0266358 0.00527374

6 B6,2
1,9 6.0730909 0.00934078

7 A7,2
1 7.1411109 0.01147649

8 A8,2
1 8.2285099 0.01274245

9 B9,2
2,13 9.3316986 0.01327785 0.0069 0.0201

10 B10,2
2,12 10.4498752 0.01363320 0.0098 0.0235

11 A11,2
2 11.5828707 0.01392605 0.0115 0.0255

12 A12,2
2 12.7314053 0.01425870 0.0132 0.0274

13 B13,2
3,14 13.8944894 0.01447244 0.0091 0.0374 0.9509

14 A14,2
3 15.0720426 0.01466715 0.0111 0.0399 1.0482

15 A15,2
3 16.2643687 0.01487677 0.0130 0.0424 1.1421

16 A16,2
4 17.4713863 0.01507158 0.0093 0.0531 1.1947

17 A17,2
5 18.6931953 0.01526705 0.0056 0.0641 1.2358

Table of permissible exponents for k = 56

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0000641 0.00003202

4 B4,2
1,6 4.0018248 0.00058692

5 B5,2
1,8 5.0107720 0.00223784

6 B6,2
1,10 6.0336021 0.00457587

7 B7,2
1,10 7.0749443 0.00692919

8 B8,2
1,10 8.1314920 0.00816567

9 A9,2
1 9.2015653 0.00890554

10 B10,2
2,15 10.2835673 0.00932007 0.0041 0.0134

11 B11,2
2,14 11.3759867 0.00951166 0.0063 0.0158

12 B12,2
2,14 12.4787878 0.00967630 0.0076 0.0173

13 A13,2
2 13.5920033 0.00982670 0.0086 0.0184

14 A14,2
2 14.7160440 0.00999685 0.0095 0.0195

15 A15,2
3 15.8501204 0.01009311 0.0067 0.0265 0.9447

16 A16,2
4 16.9946507 0.01021425 0.0040 0.0337 1.1211
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Table of permissible exponents for k = 60

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0000471 0.00002352

4 B4,2
1,6 4.0014347 0.00046255

5 B5,2
1,8 5.0088563 0.00185607

6 B6,2
1,10 6.0283226 0.00390017

7 B7,2
1,11 7.0648348 0.00611424

8 B8,2
1,10 8.1162996 0.00742085

9 A9,2
1 9.1804196 0.00813325

10 B10,2
2,16 10.2565541 0.00863245 0.0031 0.0117

11 B11,2
2,15 11.3423160 0.00880201 0.0053 0.0142

12 B12,2
2,15 12.4377875 0.00895800 0.0068 0.0157

13 A13,2
2 13.5428594 0.00908753 0.0077 0.0167

14 A14,2
2 14.6578046 0.00922726 0.0085 0.0177

15 A15,2
3 15.7824957 0.00934563 0.0059 0.0242 0.9129

16 A16,2
4 16.9168390 0.00944915 0.0033 0.0308 1.1104

Table of permissible exponents for k = 64

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0000353 0.00001762

4 B4,2
1,6 4.0011451 0.00036996

5 B5,2
1,8 5.0073658 0.00155562

6 B6,2
1,10 6.0241263 0.00335705

7 B7,2
1,11 7.0565053 0.00541830

8 B8,2
1,11 8.1035626 0.00677718

9 A9,2
1 9.1626169 0.00747861

10 B10,2
2,16 10.2336743 0.00804055 0.0022 0.0103

11 B11,2
2,16 11.3136439 0.00818830 0.0045 0.0127

12 B12,2
2,15 12.4026992 0.00833355 0.0060 0.0143

13 B13,2
2,15 13.5007324 0.00845312 0.0069 0.0153

14 A14,2
2 14.6078413 0.00856921 0.0076 0.0162

15 B15,2
3,18 15.7242889 0.00869521 0.0047 0.0216 0.8471

16 B16,2
3,18 16.8494116 0.00876473 0.0059 0.0232 0.9414

17 B17,2
4,18 17.9835998 0.00885697 0.0031 0.0289 1.1088

18 B18,2
5,18 19.1266047 0.00892866 0.0004 0.0348 1.1504



80 R. C. VAUGHAN AND T. D. WOOLEY

Table of permissible exponents for k = 68

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0000267 0.00001331

4 B4,2
1,6 4.0009181 0.00029715

5 B5,2
1,8 5.0061304 0.00130338

6 B6,2
1,10 6.0205621 0.00288990

7 B7,2
1,12 7.0489837 0.00475323

8 B8,2
1,11 8.0918863 0.00617213

9 B9,2
1,11 9.1465073 0.00690696

10 A10,2
1 10.2122415 0.00742466

11 B11,2
2,17 11.2872180 0.00766025 0.0037 0.0114

12 B12,2
2,16 12.3706630 0.00778929 0.0053 0.0130

13 B13,2
2,15 13.4625637 0.00790250 0.0062 0.0142

14 A14,2
2 14.5628858 0.00800180 0.0069 0.0149

15 A15,2
2 15.6719470 0.00811643 0.0076 0.0158

16 B16,2
3,19 16.7893310 0.00819260 0.0051 0.0212 0.9024

17 B17,2
3,19 17.9149233 0.00825686 0.0061 0.0224 0.9791

18 A18,2
3 19.0488059 0.00832341 0.0069 0.0234 1.0441

19 A19,2
4 20.1911221 0.00839565 0.0047 0.0293 1.1259

20 A20,2
5 21.3417807 0.00845975 0.0024 0.0352 1.1581
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Table of permissible exponents for k = 72

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0000205 0.00001021

4 B4,2
1,6 4.0007451 0.00024154

5 B5,2
1,8 5.0051551 0.00110272

6 B6,2
1,10 6.0176775 0.00250706

7 B7,2
1,12 7.0427686 0.00419421

8 B8,2
1,12 8.0820772 0.00565004

9 B9,2
1,11 9.1327314 0.00639741

10 A10,2
1 10.1937853 0.00688532

11 B11,2
2,18 11.2643373 0.00719463 0.0031 0.0102

12 B12,2
2,17 12.3428217 0.00731063 0.0046 0.0119

13 B13,2
2,16 13.4292736 0.00741620 0.0056 0.0131

14 A14,2
2 14.5236334 0.00750632 0.0063 0.0138

15 A15,2
2 15.6261004 0.00760346 0.0070 0.0146

16 B16,2
3,20 16.7366445 0.00769062 0.0044 0.0195 0.8628

17 B17,2
3,19 17.8548813 0.00774646 0.0054 0.0207 0.9486

18 A18,2
3 18.9808873 0.00780459 0.0062 0.0216 1.0116

19 A19,2
3 20.1147519 0.00786555 0.0070 0.0226 1.0785

20 B20,2
4,22 21.2564959 0.00792520 0.0048 0.0280 1.1276

21 B21,2
5,22 22.4061171 0.00798257 0.0024 0.0334 1.1564

22 A22,2
6 23.5636041 0.00803757 0.0006 0.0394 1.1688



82 R. C. VAUGHAN AND T. D. WOOLEY

Table of permissible exponents for k = 76

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0000159 0.00000793

4 B4,2
1,6 4.0006104 0.00019818

5 B5,2
1,8 5.0043590 0.00093729

6 B6,2
1,10 6.0152939 0.00218890

7 B7,2
1,12 7.0375713 0.00372240

8 B8,2
1,12 8.0734591 0.00515450

9 B9,2
1,11 9.1206671 0.00595570

10 A10,2
1 10.1776325 0.00641551

11 B11,2
2,18 11.2442251 0.00677969 0.0024 0.0092

12 B12,2
2,17 12.3182827 0.00688538 0.0040 0.0109

13 B13,2
2,17 13.3998892 0.00698584 0.0051 0.0121

14 A14,2
2 14.4889692 0.00706978 0.0058 0.0129

15 A15,2
2 15.5856100 0.00715274 0.0064 0.0135

16 B16,2
3,21 16.6900569 0.00724602 0.0037 0.0179 0.8224

17 B17,2
3,20 17.8017421 0.00729495 0.0048 0.0192 0.9160

18 A18,2
3 18.9207482 0.00734685 0.0056 0.0201 0.9828

19 A19,2
3 20.0471373 0.00740016 0.0063 0.0209 1.0454

20 A20,2
3 21.1809902 0.00745580 0.0070 0.0219 1.1119

21 B21,2
4,23 22.3222235 0.00750483 0.0050 0.0271 1.1305

22 B22,2
5,24 23.4709154 0.00755634 0.0026 0.0319 1.1551

23 A23,2
5 24.6270386 0.00760498 0.0038 0.0335 1.1634

24 A24,2
6 25.7906446 0.00765482 0.0018 0.0389 1.1744
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Table of permissible exponents for k = 80

s Process λs φ1 φj
∑j
i=1 φi φ∗s

3 B3,2
1,4 3.0000125 0.00000624

4 B4,2
1,6 4.0005051 0.00016419

5 B5,2
1,8 5.0037183 0.00080341

6 B6,2
1,10 6.0133258 0.00192294

7 B7,2
1,12 7.0332148 0.00332221

8 B8,2
1,12 8.0661378 0.00472571

9 B9,2
1,12 9.1101284 0.00554468

10 A10,2
1 10.1634946 0.00600304

11 B11,2
2,18 11.2265639 0.00641176 0.0019 0.0083

12 B12,2
2,18 12.2966473 0.00650521 0.0035 0.0100

13 B13,2
2,17 13.3738933 0.00660034 0.0046 0.0112

14 B14,2
2,17 14.4582437 0.00668064 0.0053 0.0120

15 A15,2
2 15.5496954 0.00675332 0.0059 0.0126

16 A16,2
2 16.6484502 0.00683410 0.0064 0.0133

17 B17,2
3,21 17.7542883 0.00689430 0.0042 0.0178 0.8823

18 A18,2
3 18.8670322 0.00693992 0.0050 0.0187 0.9570

19 A19,2
3 19.9867390 0.00698693 0.0057 0.0195 1.0160

20 A20,2
3 21.1134792 0.00703595 0.0063 0.0203 1.0785

21 B21,2
4,24 22.2472590 0.00708335 0.0044 0.0252 1.1204

22 B22,2
5,24 23.3880855 0.00712947 0.0020 0.0297 1.1467

23 A23,2
5 24.5359375 0.00717314 0.0032 0.0312 1.1545

24 A24,2
6 25.6908623 0.00721788 0.0013 0.0363 1.1651
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